首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In this paper, we extend a variance shift model, previously considered in the linear mixed models, to the linear mixed measurement error models using the corrected likelihood of Nakamura (1990 Nakamura, T. (1990). Corrected score function for errors in variables models: methodology and application to generalized linear models. Biometrika 77:127137.[Crossref], [Web of Science ®] [Google Scholar]). This model assumes that a single outlier arises from an observation with inflated variance. We derive the score test and the analogue of the likelihood ratio test, to assess whether the ith observation has inflated variance. A parametric bootstrap procedure is implemented to obtain empirical distributions of the test statistics. Finally, results of a simulation study and an example of real data are presented to illustrate the performance of proposed tests.  相似文献   

2.
In the literature, there are many results on the consequences of mis-specified models for linear models with error in the response only, see, e.g., Seber(1977). There are also discussions of estimation for the model writh errors both in the response and in the predictor variables (called measurement error models; see, e.g., Fuller(1987)). In this paper, we consider the problem of model mis-specification for measurement error models. Only a few special cases have been tackled in the past (Edland, 1996; Carroll and Ruppert, 1996 and Lakshminarayanan Amp; Gunst, 1984); we deal with the situation here in some generality. Results have been obtained as follows: (a) When a model is under-fitted, the estimate of the variance of the measurement error will be asymptotically biased, as will the regression coefficients, and the asymptotic biases in the estimates of the regression coefficients will always exist for under-fitted models. Even orthogonality of the variables in the model will not make the biases vanish. (b)For over-fitting, the estimates of the variances of measurement errors and of the regression coefficients are asymptotically unbiased. However, the variance of the estimated regression coefficients will increase. Over-fitting will cause larger changes in the variances of the estimated parameters in measurement error models than in no measurement error models.  相似文献   

3.
Generalized linear models (GLMs) with error-in-covariates are useful in epidemiological research due to the ubiquity of non-normal response variables and inaccurate measurements. The link function in GLMs is chosen by the user depending on the type of response variable, frequently the canonical link function. When covariates are measured with error, incorrect inference can be made, compounded by incorrect choice of link function. In this article we propose three flexible approaches for handling error-in-covariates and estimating an unknown link simultaneously. The first approach uses a fully Bayesian (FB) hierarchical framework, treating the unobserved covariate as a latent variable to be integrated over. The second and third are approximate Bayesian approach which use a Laplace approximation to marginalize the variables measured with error out of the likelihood. Our simulation results show support that the FB approach is often a better choice than the approximate Bayesian approaches for adjusting for measurement error, particularly when the measurement error distribution is misspecified. These approaches are demonstrated on an application with binary response.  相似文献   

4.
We consider a generalized leverage matrix useful for the identification of influential units and observations in linear mixed models and show how a decomposition of this matrix may be employed to identify high leverage points for both the marginal fitted values and the random effect component of the conditional fitted values. We illustrate the different uses of the two components of the decomposition with a simulated example as well as with a real data set.  相似文献   

5.
This paper describes an EM algorithm for maximum likelihood estimation in generalized linear models (GLMs) with continuous measurement error in the explanatory variables. The algorithm is an adaptation of that for nonparametric maximum likelihood (NPML) estimation in overdispersed GLMs described in Aitkin (Statistics and Computing 6: 251–262, 1996). The measurement error distribution can be of any specified form, though the implementation described assumes normal measurement error. Neither the reliability nor the distribution of the true score of the variables with measurement error has to be known, nor are instrumental variables or replication required.Standard errors can be obtained by omitting individual variables from the model, as in Aitkin (1996).Several examples are given, of normal and Bernoulli response variables.  相似文献   

6.
This paper discusses a general strategy for reducing measurement-error-induced bias in statistical models. It is assumed that the measurement error is unbiased with a known variance although no other distributional assumptions on the measurement-error are employed,

Using a preliminary fit of the model to the observed data, a transformation of the variable measured with error is estimated. The transformation is constructed so that the estimates obtained by refitting the model to the ‘corrected’ data have smaller bias,

Whereas the general strategy can be applied in a number of settings, this paper focuses on the problem of covariate measurement error in generalized linear models, Two estimators are derived and their effectiveness at reducing bias is demonstrated in a Monte Carlo study.  相似文献   

7.
We present influence diagnostics for linear measurement error models with stochastic linear restrictions using the corrected likelihood of Nakamura in 1990. The case deletion and mean shift outlier models are developed to identify outlying and influential observations. We derive a corrected score test statistic for outlier detection based on mean shift outlier models. The analogs of Cook's distance and likelihood distance are proposed to determine influential observations based on case deletion models. A parametric bootstrap procedure is used to obtain empirical distributions of the test statistics and a simulation study has been used to evaluate the performance of the proposed estimators based on the mean squares error criterion and the score test statistic. Finally, a numerical example is given to illustrate the theoretical results.  相似文献   

8.
In this paper, we introduce stochastic-restricted Liu predictors which will be defined by combining in a special way the two approaches followed in obtaining the mixed predictors and the Liu predictors in the linear mixed models. Superiorities of the linear combination of the new predictor to the Liu and mixed predictors are done in the sense of mean square error matrix criterion. Finally, numerical examples and a simulation study are done to illustrate the findings. In numerical examples, we took some arbitrary observations from the data as the prior information since we did not have historical data or additional information about the data sets. The results show that this case does the new estimator gain efficiency over the constituent estimators and provide accurate estimation and prediction of the data.  相似文献   

9.
We consider measurement error models within the time series unobserved component framework. A variable of interest is observed with some measurement error and modelled as an unobserved component. The forecast and the prediction of this variable given the observed values is given by the Kalman filter and smoother along with their conditional variances. By expressing the forecasts and predictions as weighted averages of the observed values, we investigate the effect of estimation error in the measurement and observation noise variances. We also develop corrected standard errors for prediction and forecasting accounting for the fact that the measurement and observation error variances are estimated by the same sample that is used for forecasting and prediction purposes. We apply the theory to the Yellowstone grizzly bears and US index of production datasets.  相似文献   

10.
In this paper, we introduce mixed Liu estimator (MLE) for the vector of parameters in linear measurement error models by unifying the sample and the prior information. The MLE is a generalization of the mixed estimator (ME) and Liu estimator (LE). In particular, asymptotic normality properties of the estimators are discussed, and the performance of the MLE over the LE and ME are compared based on mean squared error matrix (MSEM). Finally, a Monte Carlo simulation and a numerical example are also presented for analysis.  相似文献   

11.
Abstract

The regression model with ordinal outcome has been widely used in a lot of fields because of its significant effect. Moreover, predictors measured with error and multicollinearity are long-standing problems and often occur in regression analysis. However there are not many studies on dealing with measurement error models with generally ordinal response, even fewer when they suffer from multicollinearity. The purpose of this article is to estimate parameters of ordinal probit models with measurement error and multicollinearity. First, we propose to use regression calibration and refined regression calibration to estimate parameters in ordinal probit models with measurement error. Second, we develop new methods to obtain estimators of parameters in the presence of multicollinearity and measurement error in ordinal probit model. Furthermore we also extend all the methods to quadratic ordinal probit models and talk about the situation in ordinal logistic models. These estimators are consistent and asymptotically normally distributed under general conditions. They are easy to compute, perform well and are robust against the normality assumption for the predictor variables in our simulation studies. The proposed methods are applied to some real datasets.  相似文献   

12.
In this paper, we consider a linear mixed model with measurement errors in fixed effects. We find the corrected score function estimators for the variance components. An iterative algorithm is proposed for estimating the parameters. The computations on each iteration of this algorithm are those associated with computing estimates of fixed and random effects for given values of the variance components. We also derive the consistency of the estimators under regularity conditions. The simulation study shows that for relatively small sample size the corrected estimators perform very well. Finally, an example of real data is given for illustration.  相似文献   

13.
In longitudinal studies, missing responses and mismeasured covariates are commonly seen due to the data collection process. Without cautiousness in data analysis, inferences from the standard statistical approaches may lead to wrong conclusions. In order to improve the estimation for longitudinal data analysis, a doubly robust estimation method for partially linear models, which can simultaneously account for the missing responses and mismeasured covariates, is proposed. Imprecisions of covariates are corrected by taking advantage of the independence between replicate measurement errors, and missing responses are handled by the doubly robust estimation under the mechanism of missing at random. The asymptotic properties of the proposed estimators are established under regularity conditions, and simulation studies demonstrate desired properties. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study.  相似文献   

14.
In this paper, we develop modified versions of the likelihood ratio test for multivariate heteroskedastic errors-in-variables regression models. The error terms are allowed to follow a multivariate distribution in the elliptical class of distributions, which has the normal distribution as a special case. We derive the Skovgaard-adjusted likelihood ratio statistics, which follow a chi-squared distribution with a high degree of accuracy. We conduct a simulation study and show that the proposed tests display superior finite sample behaviour as compared to the standard likelihood ratio test. We illustrate the usefulness of our results in applied settings using a data set from the WHO MONICA Project on cardiovascular disease.  相似文献   

15.
In this paper, we propose a robust estimation procedure for a class of non‐linear regression models when the covariates are contaminated with Laplace measurement error, aiming at constructing an estimation procedure for the regression parameters which are less affected by the possible outliers, and heavy‐tailed underlying distribution, as well as reducing the bias introduced by the measurement error. Starting with the modal regression procedure developed for the measurement error‐free case, a non‐trivial modification is made so that the modified version can effectively correct the potential bias caused by measurement error. Large sample properties of the proposed estimate, such as the convergence rate and the asymptotic normality, are thoroughly investigated. A simulation study and real data application are conducted to illustrate the satisfying finite sample performance of the proposed estimation procedure.  相似文献   

16.
We propose variable selection procedures based on penalized score functions derived for linear measurement error models. To calibrate the selection procedures, we define new tuning parameter selectors based on the scores. Large-sample properties of these new tuning parameter selectors are established for the proposed procedures. These new methods are compared in simulations and a real-data application with competing methods where one ignores measurement error or uses the Bayesian information criterion to choose the tuning parameter.  相似文献   

17.
Mixed effects models and Berkson measurement error models are widely used. They share features which the author uses to develop a unified estimation framework. He deals with models in which the random effects (or measurement errors) have a general parametric distribution, whereas the random regression coefficients (or unobserved predictor variables) and error terms have nonparametric distributions. He proposes a second-order least squares estimator and a simulation-based estimator based on the first two moments of the conditional response variable given the observed covariates. He shows that both estimators are consistent and asymptotically normally distributed under fairly general conditions. The author also reports Monte Carlo simulation studies showing that the proposed estimators perform satisfactorily for relatively small sample sizes. Compared to the likelihood approach, the proposed methods are computationally feasible and do not rely on the normality assumption for random effects or other variables in the model.  相似文献   

18.
Individual-level models (ILMs) for infectious disease can be used to model disease spread between individuals while taking into account important covariates. One important covariate in determining the risk of infection transfer can be spatial location. At the same time, measurement error is a concern in many areas of statistical analysis, and infectious disease modelling is no exception. In this paper, we are concerned with the issue of measurement error in the recorded location of individuals when using a simple spatial ILM to model the spread of disease within a population. An ILM that incorporates spatial location random effects is introduced within a hierarchical Bayesian framework. This model is tested upon both simulated data and data from the UK 2001 foot-and-mouth disease epidemic. The ability of the model to successfully identify both the spatial infection kernel and the basic reproduction number (R 0) of the disease is tested.  相似文献   

19.
Measurement error and misclassification arise commonly in various data collection processes. It is well-known that ignoring these features in the data analysis usually leads to biased inference. With the generalized linear model setting, Yi et al. [Functional and structural methods with mixed measurement error and misclassification in covariates. J Am Stat Assoc. 2015;110:681–696] developed inference methods to adjust for the effects of measurement error in continuous covariates and misclassification in discrete covariates simultaneously for the scenario where validation data are available. The augmented simulation-extrapolation (SIMEX) approach they developed generalizes the usual SIMEX method which is only applicable to handle continuous error-prone covariates. To implement this method, we develop an R package, augSIMEX, for public use. Simulation studies are conducted to illustrate the use of the algorithm. This package is available at CRAN.  相似文献   

20.
This paper is concerned with the ridge estimation of fixed and random effects in the context of Henderson's mixed model equations in the linear mixed model. For this purpose, a penalized likelihood method is proposed. A linear combination of ridge estimator for fixed and random effects is compared to a linear combination of best linear unbiased estimator for fixed and random effects under the mean-square error (MSE) matrix criterion. Additionally, for choosing the biasing parameter, a method of MSE under the ridge estimator is given. A real data analysis is provided to illustrate the theoretical results and a simulation study is conducted to characterize the performance of ridge and best linear unbiased estimators approach in the linear mixed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号