首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian predictive density functions, which are necessary to obtain bounds for predictive intervals of future order statistics, are obtained when the population density is a finite mixture of general components. Such components include, among others, the Weibull (exponential and Rayleigh as special cases), compound Weibull (three-parameter Burr type XII), Pareto, beta, Gompertz and compound Gompertz distributions. The prior belief of the experimenter is measured by a general distribution that was suggested by AL-Hussaini (J. Statist. Plann. Inf. 79 (1999b) 79). Applications to finite mixtures of Weibull and Burr type XII components are illustrated and comparison is made, in the special cases of the exponential and Pareto type II components, with previous results.  相似文献   

2.
In this paper, progressive-stress accelerated life tests are applied when the lifetime of a product under design stress follows the exponentiated distribution [G(x)]α. The baseline distribution, G(x), follows a general class of distributions which includes, among others, Weibull, compound Weibull, power function, Pareto, Gompertz, compound Gompertz, normal and logistic distributions. The scale parameter of G(x) satisfies the inverse power law and the cumulative exposure model holds for the effect of changing stress. A special case for an exponentiated exponential distribution has been discussed. Using type-II progressive hybrid censoring and MCMC algorithm, Bayes estimates of the unknown parameters based on symmetric and asymmetric loss functions are obtained and compared with the maximum likelihood estimates. Normal approximation and bootstrap confidence intervals for the unknown parameters are obtained and compared via a simulation study.  相似文献   

3.
A general class of distributions is proposed to be the underlying population model from which observables are to be predicted using the Bayesian approach. This class of distributions includes, among others, the Weibull, compound Weibull (or three-parameter Burr-type XII), Pareto, beta, Gompertz and compound Gompertz distributions. A proper general prior density function is suggested and the predictive density functions are obtained in the one- and two-sample cases. The informative sample is assumed to be a type II censored sample. Illustrative examples of Weibull (α,β), Burr-type XII (α,β), and Pareto (α,β) distributions are given and compared with the results obtained by previous researchers.  相似文献   

4.
An expression for the Bayesian predictive survival function of the median of a set of future observations is obtained whether its size is assumed to be odd or even. Both of the informative and future samples are drawn from a population whose distribution is a general class that includes several distributions used in life testing (and other areas as well) such as the Weibull (including the exponential and Rayleigh), compound Weibull (including the compound exponential and compound Rayleigh), Pareto, beta, Gompertz and compound Gompertz, among other distributions. A general proper (conjugate) prior density function is used to cover most prior distributions that have been used in literature. Applications to the Weibull, exponential and Rayleigh models are illustrated.  相似文献   

5.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

6.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

7.
In this article, we discuss the maximum likelihood estimates (MLEs) for the exponential and Weibull distributions by considering progressive Type-I interval censored data. For exponential distribution, the explicit expression of MLE of failure rate cannot be obtained when the intervals are not equal in length. The direct application of some numerical algorithms, such as the Newton–Raphson algorithm, is non-ideal because of the cumbersome second derivative. We apply some equivalent quantities to obtain the MLE of failure rate of exponential distribution. Based on the equivalent quantities and the Weibull-to-exponential transformation technique, we propose a new algorithm to obtain the MLEs for the parameters of progressive Type-I interval Weibull data. An example reanalysis and some simulation studies are carried out to illustrate the performance of the estimations using the new algorithm.  相似文献   

8.
In this paper we develop a regression model for survival data in the presence of long-term survivors based on the generalized Gompertz distribution introduced by El-Gohary et al. [The generalized Gompertz distribution. Appl Math Model. 2013;37:13–24] in a defective version. This model includes as special case the Gompertz cure rate model proposed by Gieser et al. [Modelling cure rates using the Gompertz model with covariate information. Stat Med. 1998;17:831–839]. Next, an expectation maximization algorithm is then developed for determining the maximum likelihood estimates (MLEs) of the parameters of the model. In addition, we discuss the construction of confidence intervals for the parameters using the asymptotic distributions of the MLEs and the parametric bootstrap method, and assess their performance through a Monte Carlo simulation study. Finally, the proposed methodology was applied to a database on uterine cervical cancer.  相似文献   

9.
SUMMARY Families of joint distributions for describing the lifetimes of a system of components that operate under an unknown environment, when the environment follows a Weibull distribution, are derived. The reliability function for this system is calculated and several properties of the aforementioned joint distributions are investigated.  相似文献   

10.
A progressive hybrid censoring scheme is a mixture of type-I and type-II progressive censoring schemes. In this paper, we mainly consider the analysis of progressive type-II hybrid-censored data when the lifetime distribution of the individual item is the normal and extreme value distributions. Since the maximum likelihood estimators (MLEs) of these parameters cannot be obtained in the closed form, we propose to use the expectation and maximization (EM) algorithm to compute the MLEs. Also, the Newton–Raphson method is used to estimate the model parameters. The asymptotic variance–covariance matrix of the MLEs under EM framework is obtained by Fisher information matrix using the missing information and asymptotic confidence intervals for the parameters are then constructed. This study will end up with comparing the two methods of estimation and the asymptotic confidence intervals of coverage probabilities corresponding to the missing information principle and the observed information matrix through a simulation study, illustrated examples and real data analysis.  相似文献   

11.
Semiparametric families are families that have both a real parameter and a parameter that is itself a distribution. A number of semiparametric families suitable for lifetime data are introduced: scale, power, frailty (proportional hazards), age, moment, Laplace transform, and convolution parameter families. The coincidence of two families provides a characterization of the underlying distribution. Characterizations of the Weibull, gamma, lognormal, and Gompertz distributions are obtained.  相似文献   

12.
In reliability analysis, it is common to consider several causes, either mechanical or electrical, those are competing to fail a unit. These causes are called “competing risks.” In this paper, we consider the simple step-stress model with competing risks for failure from Weibull distribution under progressive Type-II censoring. Based on the proportional hazard model, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters. The confidence intervals are derived by using the asymptotic distributions of the MLEs and bootstrap method. For comparison, we obtain the Bayesian estimates and the highest posterior density (HPD) credible intervals based on different prior distributions. Finally, their performance is discussed through simulations.  相似文献   

13.
In this paper, we consider the analysis of hybrid censored competing risks data, based on Cox's latent failure time model assumptions. It is assumed that lifetime distributions of latent causes of failure follow Weibull distribution with the same shape parameter, but different scale parameters. Maximum likelihood estimators (MLEs) of the unknown parameters can be obtained by solving a one-dimensional optimization problem, and we propose a fixed-point type algorithm to solve this optimization problem. Approximate MLEs have been proposed based on Taylor series expansion, and they have explicit expressions. Bayesian inference of the unknown parameters are obtained based on the assumption that the shape parameter has a log-concave prior density function, and for the given shape parameter, the scale parameters have Beta–Gamma priors. We propose to use Markov Chain Monte Carlo samples to compute Bayes estimates and also to construct highest posterior density credible intervals. Monte Carlo simulations are performed to investigate the performances of the different estimators, and two data sets have been analysed for illustrative purposes.  相似文献   

14.
In this article, the simple step-stress model is considered based on generalized Type-I hybrid censored data from the exponential distribution. The maximum likelihood estimators (MLEs) of the unknown parameters are derived assuming a cumulative exposure model. We then derive the exact distributions of the MLEs of the parameters using conditional moment generating functions. The Bayesian estimators of the parameters are derived and then compared with the MLEs. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs, Bayesian, and the parametric bootstrap methods. The problem of determining the optimal stress-changing point is discussed and the MLEs of the pth quantile and reliability functions at the use condition are obtained. Finally, Monte Carlo simulation and some numerical results are presented for illustrating all the inferential methods developed here.  相似文献   

15.
Distributions whose extremity values of the support depend on unknown pa¬rameters are usually known as nonregular distributions. In most cases, the MLEs for these parameters cannot be obtained by differentiation. Familiar examples are the uniform distribution on the interval (0,0) and the truncated exponential distribution with truncation parameter 0. However, there exist distributions whose extremity points of the support depend on unknown pa¬rameters, which nevertheless are regular in the sense that the MLEs can be obtained by differentiation. This note provides a method of constructing such nonregular distributions with regular MLEs.  相似文献   

16.
The maximum likelihood estimators of the Weibull distribution based on upper records are biased. Exact expressions are derived for constructing bias corrected MLEs. The performance of the bias corrected MLEs is compared with the MLEs by simulations and real data sets.  相似文献   

17.
Alice L. Morais 《Statistics》2017,51(2):294-313
We extend the Weibull power series (WPS) class of distributions to the new class of extended Weibull power series (EWPS) class of distributions. The EWPS distributions are related to series and parallel systems with a random number of components, whereas the WPS distributions [Morais AL, Barreto-Souza W. A compound class of Weibull and power series distributions. Computational Statistics and Data Analysis. 2011;55:1410–1425] are related to series systems only. Unlike the WPS distributions, for which the Weibull is a limiting special case, the Weibull law is a particular case of the EWPS distributions. We prove that the distributions in this class are identifiable under a simple assumption. We also prove stochastic and hazard rate order results and highlight that the shapes of the EWPS distributions are markedly more flexible than the shapes of the WPS distributions. We define a regression model for the EWPS response random variable to model a scale parameter and its quantiles. We present the maximum likelihood estimator and prove its consistency and asymptotic normal distribution. Although series and parallel systems motivated the construction of this class, the EWPS distributions are suitable for modelling a wide range of positive data sets. To illustrate potential uses of this model, we apply it to a real data set on the tensile strength of coconut fibres and present a simple device for diagnostic purposes.  相似文献   

18.
We studied properties of maximum likelihood estimators (MLEs) of the variance components obtained from balanced data of the one-way classification. Exact and asymptotic expected values and variances of these MLEs were derived under the usual normality assumptions. Numerical studies illustrate these expected values and variances, and also illustrate the probability of obtaining a negative solution to the maximum likelihood (ML) equation for the between-class variance component. Simulations were used to study the robustness of the ML estimators under non-normal distributions.  相似文献   

19.
In reliability and life-testing experiments, the researcher is often interested in the effects of extreme or varying stress factors such as temperature, voltage and load on the lifetimes of experimental units. Step-stress test, which is a special class of accelerated life-tests, allows the experimenter to increase the stress levels at fixed times during the experiment in order to obtain information on the parameters of the life distributions more quickly than under normal operating conditions. In this paper, we consider the simple step-stress model under the exponential distribution when the available data are Type-I hybrid censored. We derive the maximum likelihood estimators (MLEs) of the parameters assuming a cumulative exposure model with lifetimes being exponentially distributed. The exact distributions of the MLEs of parameters are obtained through the use of conditional moment generating functions. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs and the parametric bootstrap methods, and assess their performance through a Monte Carlo simulation study. Finally, we present two examples to illustrate all the methods of inference discussed here.  相似文献   

20.
In this paper, the identifiability of finite mixture of generalized extreme value (GEV) distributions is proved. Next, a procedure for finding maximum likelihood estimates (MLEs) of the parameters of a finite mixture of two generalized extreme value (MGEV) distributions is presented by using classified and unclassified observations. Then, a nonlinear discriminant function for a mixture of two GEV distributions is derived and the performance of the corresponding estimated discriminant function is investigated through a series of simulation experiments. Finally, the methodology is applied to real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号