首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extreme value distribution has been extensively used to model natural phenomena such as rainfall and floods, and also in modeling lifetimes and material strengths. Maximum likelihood estimation (MLE) for the parameters of the extreme value distribution leads to likelihood equations that have to be solved numerically, even when the complete sample is available. In this paper, we discuss point and interval estimation based on progressively Type-II censored samples. Through an approximation in the likelihood equations, we obtain explicit estimators which are approximations to the MLEs. Using these approximate estimators as starting values, we obtain the MLEs using an iterative method and examine numerically their bias and mean squared error. The approximate estimators compare quite favorably to the MLEs in terms of both bias and efficiency. Results of the simulation study, however, show that the probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic normality are unsatisfactory for both these estimators and particularly so when the effective sample size is small. We, therefore, suggest the use of unconditional simulated percentage points of these pivotal quantities for the construction of confidence intervals. The results are presented for a wide range of sample sizes and different progressive censoring schemes. We conclude with an illustrative example.  相似文献   

2.
《Statistics》2012,46(6):1329-1356
ABSTRACT

Recently Mondal and Kundu [Mondal S, Kundu D. A new two sample type-II progressive censoring scheme. Commun Stat Theory Methods. 2018. doi:10.1080/03610926.2018.1472781] introduced a Type-II progressive censoring scheme for two populations. In this article, we extend the above scheme for more than two populations. The aim of this paper is to study the statistical inference under the multi-sample Type-II progressive censoring scheme, when the underlying distributions are exponential. We derive the maximum likelihood estimators (MLEs) of the unknown parameters when they exist and find out their exact distributions. The stochastic monotonicity of the MLEs has been established and this property can be used to construct exact confidence intervals of the parameters via pivoting the cumulative distribution functions of the MLEs. The distributional properties of the ordered failure times are also obtained. The Bayesian analysis of the unknown model parameters has been provided. The performances of the different methods have been examined by extensive Monte Carlo simulations. We analyse two data sets for illustrative purposes.  相似文献   

3.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

4.
The Type-II progressive hybrid censoring scheme has received wide attention, but it has a disadvantage in that long time may be required to complete the life test. The generalized progressive Type-II hybrid censoring scheme has recently been proposed to solve this problem. Under the censoring scheme, the time on test does not exceed a predetermined time. In this paper, we propose a robust Bayesian approach based on a hierarchical structure when the generalized progressive Type-II hybrid censored sample has a two-parameter exponential distribution. For unknown parameters, marginal posterior distributions are provided in closed forms, and their statistical properties are discussed. To examine the robustness of the proposed method, Monte Carlo simulations are conducted and a real data set is analyzed. Further, the quality and adequacy of the proposed model are evaluated in an analysis based on the real data.  相似文献   

5.
Comparative lifetime experiments are of great importance when the interest is in ascertaining the relative merits of two competing products with regard to their reliability. In this article, we consider two exponential populations and when joint progressive Type-II censoring is implemented on the two samples. We then derive the moment generating functions and the exact distributions of the maximum likelihood estimators (MLEs) of the mean lifetimes of the two exponential populations under such a joint progressive Type-II censoring. We then discuss the exact lower confidence bounds, exact confidence intervals, and simultaneous confidence regions. Next, we discuss the corresponding approximate results based on the asymptotic normality of the MLEs as well as those based on the Bayesian method. All these confidence intervals and regions are then compared by means of Monte Carlo simulations with those obtained from bootstrap methods. Finally, an illustrative example is presented in order to illustrate all the methods of inference discussed here.  相似文献   

6.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

7.
We discuss the maximum likelihood estimates (MLEs) of the parameters of the log-gamma distribution based on progressively Type-II censored samples. We use the profile likelihood approach to tackle the problem of the estimation of the shape parameter κ. We derive approximate maximum likelihood estimators of the parameters μ and σ and use them as initial values in the determination of the MLEs through the Newton–Raphson method. Next, we discuss the EM algorithm and propose a modified EM algorithm for the determination of the MLEs. A simulation study is conducted to evaluate the bias and mean square error of these estimators and examine their behavior as the progressive censoring scheme and the shape parameter vary. We also discuss the interval estimation of the parameters μ and σ and show that the intervals based on the asymptotic normality of MLEs have very poor probability coverages for small values of m. Finally, we present two examples to illustrate all the methods of inference discussed in this paper.  相似文献   

8.
In the design of constant-stress life-testing experiments, the optimal allocation in a multi-level stress test with Type-I or Type-II censoring based on the Weibull regression model has been studied in the literature. Conventional Type-I and Type-II censoring schemes restrict our ability to observe extreme failures in the experiment and these extreme failures are important in the estimation of upper quantiles and understanding of the tail behaviors of the lifetime distribution. For this reason, we propose the use of progressive extremal censoring at each stress level, whereas the conventional Type-II censoring is a special case. The proposed experimental scheme allows some extreme failures to be observed. The maximum likelihood estimators of the model parameters, the Fisher information, and asymptotic variance–covariance matrices of the maximum likelihood estimates are derived. We consider the optimal experimental planning problem by looking at four different optimality criteria. To avoid the computational burden in searching for the optimal allocation, a simple search procedure is suggested. Optimal allocation of units for two- and four-stress-level situations is determined numerically. The asymptotic Fisher information matrix and the asymptotic optimal allocation problem are also studied and the results are compared with optimal allocations with specified sample sizes. Finally, conclusions and some practical recommendations are provided.  相似文献   

9.
A progressive hybrid censoring scheme is a mixture of type-I and type-II progressive censoring schemes. In this paper, we mainly consider the analysis of progressive type-II hybrid-censored data when the lifetime distribution of the individual item is the normal and extreme value distributions. Since the maximum likelihood estimators (MLEs) of these parameters cannot be obtained in the closed form, we propose to use the expectation and maximization (EM) algorithm to compute the MLEs. Also, the Newton–Raphson method is used to estimate the model parameters. The asymptotic variance–covariance matrix of the MLEs under EM framework is obtained by Fisher information matrix using the missing information and asymptotic confidence intervals for the parameters are then constructed. This study will end up with comparing the two methods of estimation and the asymptotic confidence intervals of coverage probabilities corresponding to the missing information principle and the observed information matrix through a simulation study, illustrated examples and real data analysis.  相似文献   

10.
ABSTRACT

Distributions of the maximum likelihood estimators (MLEs) in Type-II (progressive) hybrid censoring based on two-parameter exponential distributions have been obtained using a moment generating function approach. Although resulting in explicit expressions, the representations are complicated alternating sums. Using the spacings-based approach of Cramer and Balakrishnan [On some exact distributional results based on Type-I progressively hybrid censored data from exponential distributions. Statist Methodol. 2013;10:128–150], we derive simple expressions for the exact density and distribution functions of the MLEs in terms of B-spline functions. These representations can be easily implemented on a computer and provide an efficient method to compute density and distribution functions as well as moments of Type-II (progressively) hybrid censored order statistics.  相似文献   

11.
Considering the Fisher information about a single parameter contained in a progressively Type-II censored sample, the problem of optimal progressive censoring plans arises. By introducing the notion of asymptotically optimal designs, we show that right censoring is ‘almost’ optimal for many important distributions including scale families of extreme value, normal, logistic, and Laplace distributions. Moreover, it turns out that for the extreme value distribution right censoring is the only asymptotically optimal one-step censoring scheme.  相似文献   

12.
Progressive Type-II censoring was introduced by Cohen (Technometrics 5(1963) 327) and has been the topic of much research. The question stands whether it is sensible to use this sampling plan by design, instead of regular Type-II right censoring. We introduce an asymptotic progressive censoring model, and find optimal censoring schemes for location-scale families. Our optimality criterion is the determinant of the 2×2 covariance matrix of the asymptotic best linear unbiased estimators. We present an explicit expression for this criterion, and conditions for its boundedness. By means of numerical optimization, we determine optimal censoring schemes for the extreme value, the Weibull and the normal distributions. In many situations, it is shown that these progressive schemes significantly improve upon regular Type-II right censoring.  相似文献   

13.
In reliability analysis, it is common to consider several causes, either mechanical or electrical, those are competing to fail a unit. These causes are called “competing risks.” In this paper, we consider the simple step-stress model with competing risks for failure from Weibull distribution under progressive Type-II censoring. Based on the proportional hazard model, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters. The confidence intervals are derived by using the asymptotic distributions of the MLEs and bootstrap method. For comparison, we obtain the Bayesian estimates and the highest posterior density (HPD) credible intervals based on different prior distributions. Finally, their performance is discussed through simulations.  相似文献   

14.
The Birnbaum–Saunders (BS) distribution is a positively skewed distribution and is a common model for analysing lifetime data. In this paper, we discuss the existence and uniqueness of the maximum likelihood estimates (MLEs) of the parameters of BS distribution based on Type-I, Type-II and hybrid censored samples. The line of proof is based on the monotonicity property of the likelihood function. We then describe the numerical iterative procedure for determining the MLEs of the parameters, and point out briefly some recently developed simple methods of estimation in the case of Type-II censoring. Some graphical illustrations of the approach are given for three real data from the reliability literature. Finally, for illustrative purpose, we also present an example in which the MLEs do not exist.  相似文献   

15.
In this article, a competing risks model based on exponential distributions is considered under the adaptive Type-II progressively censoring scheme introduced by Ng et al. [2009, Naval Research Logistics 56:687-698], for life testing or reliability experiment. Moreover, we assumed that some causes of failures are unknown. The maximum likelihood estimators (MLEs) of unknown parameters are established. The exact conditional and the asymptotic distributions of the obtained estimators are derived to construct the confidence intervals as well as the two different bootstraps of different unknown parameters. Under suitable priors on the unknown parameters, Bayes estimates and the corresponding two sides of Bayesian probability intervals are obtained. Also, for the purpose of evaluating the average bias and mean square error of the MLEs, and comparing the confidence intervals based on all mentioned methods, a simulation study was carried out. Finally, we present one real dataset to conduct the proposed methods.  相似文献   

16.
In this article, we develop exact inference for two populations that have a two-parameter exponential distribution with the same location parameter and different scale parameters when Type-II censoring is implemented on the two samples in a combined manner. We obtain the conditional maximum likelihood estimators (MLEs) of the three parameters. We then derive the exact distributions of these MLEs along with their moment generating functions. Based on general entropy loss function, Bayesian study about the parameters is presented. Finally, some simulation results and an illustrative example are presented to illustrate the methods of inference developed here.  相似文献   

17.
In this paper, we introduce a new adaptive Type-I progressive hybrid censoring scheme, which has some advantages over the progressive hybrid censoring schemes already discussed in the literature. Based on an adaptive Type-I progressively hybrid censored sample, we derive the exact distribution of the maximum-likelihood estimator (MLE) of the mean lifetime of an exponential distribution as well as confidence intervals for the failure rate using exact distribution, asymptotic distribution, and three parametric bootstrap resampling methods. Furthermore, we provide computational formula for the expected number of failures and investigate the performance of the point and interval estimation for the failure rate in this case. An alternative simple form for the distribution of the MLE under adaptive Type-II progressive hybrid censoring scheme proposed by Ng et al. [Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Naval Res. Logist. 56 (2009), pp. 687–698] is obtained. Finally, from the exact distribution of the MLE, we establish the explicit expression for the Bayes risk of a sampling plan under adaptive Type-II progressive hybrid censoring scheme when a general loss function is used, and present some optimal Bayes solutions under four different progressive hybrid censoring schemes to illustrate the effectiveness of the proposed method.  相似文献   

18.
We consider the problem of making statistical inference on unknown parameters of a lognormal distribution under the assumption that samples are progressively censored. The maximum likelihood estimates (MLEs) are obtained by using the expectation-maximization algorithm. The observed and expected Fisher information matrices are provided as well. Approximate MLEs of unknown parameters are also obtained. Bayes and generalized estimates are derived under squared error loss function. We compute these estimates using Lindley's method as well as importance sampling method. Highest posterior density interval and asymptotic interval estimates are constructed for unknown parameters. A simulation study is conducted to compare proposed estimates. Further, a data set is analysed for illustrative purposes. Finally, optimal progressive censoring plans are discussed under different optimality criteria and results are presented.  相似文献   

19.
The Type-II progressive censoring scheme has become very popular for analyzing lifetime data in reliability and survival analysis. However, no published papers address parameter estimation under progressive Type-II censoring for the mixed exponential distribution (MED), which is an important model for reliability and survival analysis. This is the problem that we address in this paper. It is noted that maximum likelihood estimation of unknown parameters cannot be obtained in closed form due to the complicated log-likelihood function. We solve this problem by using the EM algorithm. Finally, we obtain closed form estimates of the model. The proposed methods are illustrated by both some simulations and a case analysis.  相似文献   

20.
Type-I and Type-II censoring schemes are the widely used censoring schemes available for life testing experiments. A mixture of Type-I and Type-II censoring schemes is known as a hybrid censoring scheme. Different hybrid censoring schemes have been introduced in recent years. In the last few years, a progressive censoring scheme has also received considerable attention. In this article, we mainly consider the Bayesian inference of the unknown parameters of two-parameter exponential distribution under different hybrid and progressive censoring schemes. It is observed that in general the Bayes estimate and the associated credible interval of any function of the unknown parameters, cannot be obtained in explicit form. We propose to use the Monte Carlo sampling procedure to compute the Bayes estimate and also to construct the associated credible interval. Monte Carlo Simulation experiments have been performed to see the effectiveness of the proposed method in case of Type-I hybrid censored samples. The performances are quite satisfactory. One data analysis has been performed for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号