首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Abstract.  The performance of multivariate kernel density estimates depends crucially on the choice of bandwidth matrix, but progress towards developing good bandwidth matrix selectors has been relatively slow. In particular, previous studies of cross-validation (CV) methods have been restricted to biased and unbiased CV selection of diagonal bandwidth matrices. However, for certain types of target density the use of full (i.e. unconstrained) bandwidth matrices offers the potential for significantly improved density estimation. In this paper, we generalize earlier work from diagonal to full bandwidth matrices, and develop a smooth cross-validation (SCV) methodology for multivariate data. We consider optimization of the SCV technique with respect to a pilot bandwidth matrix. All the CV methods are studied using asymptotic analysis, simulation experiments and real data analysis. The results suggest that SCV for full bandwidth matrices is the most reliable of the CV methods. We also observe that experience from the univariate setting can sometimes be a misleading guide for understanding bandwidth selection in the multivariate case.  相似文献   

2.
We propose a new modified (biased) cross-validation method for adaptively determining the bandwidth in a nonparametric density estimation setup. It is shown that the method provides consistent minimizers. Some simulation results are reported on which compare the small sample behavior of the new and the classical cross-validation selectors.  相似文献   

3.
A bandwidth selection method that combines the concept of least-squares cross-validation and the plug-in approach is being introduced in connection with kernel density estimation. A simulation study reveals that this hybrid methodology outperforms some commonly used bandwidth selection rules. It is shown that the proposed approach can also be readily employed in the context of variable kernel density estimation. We conclude with two illustrative examples.  相似文献   

4.
With rapid development in the technology of measuring disease characteristics at molecular or genetic level, it is possible to collect a large amount of data on various potential predictors of the clinical outcome of interest in medical research. It is often of interest to effectively use the information on a large number of predictors to make prediction of the interested outcome. Various statistical tools were developed to overcome the difficulties caused by the high-dimensionality of the covariate space in the setting of a linear regression model. This paper focuses on the situation, where the interested outcomes are subjected to right censoring. We implemented the extended partial least squares method along with other commonly used approaches for analyzing the high-dimensional covariates to the ACTG333 data set. Especially, we compared the prediction performance of different approaches with extensive cross-validation studies. The results show that the Buckley–James based partial least squares, stepwise subset model selection and principal components regression have similar promising predictive power and the partial least square method has several advantages in terms of interpretability and numerical computation.  相似文献   

5.
Length-biased data are a particular case of weighted data, which arise in many situations: biomedicine, quality control or epidemiology among others. In this paper we study the theoretical properties of kernel density estimation in the context of length-biased data, proposing two consistent bootstrap methods that we use for bandwidth selection. Apart from the bootstrap bandwidth selectors we suggest a rule-of-thumb. These bandwidth selection proposals are compared with a least-squares cross-validation method. A simulation study is accomplished to understand the behaviour of the procedures in finite samples.  相似文献   

6.
Several estimators of squared prediction error have been suggested for use in model and bandwidth selection problems. Among these are cross-validation, generalized cross-validation and a number of related techniques based on the residual sum of squares. For many situations with squared error loss, e.g. nonparametric smoothing, these estimators have been shown to be asymptotically optimal in the sense that in large samples the estimator minimizing the selection criterion also minimizes squared error loss. However, cross-validation is known not to be asymptotically optimal for some `easy' location problems. We consider selection criteria based on estimators of squared prediction risk for choosing between location estimators. We show that criteria based on adjusted residual sum of squares are not asymptotically optimal for choosing between asymptotically normal location estimators that converge at rate n 1/2but are when the rate of convergence is slower. We also show that leave-one-out cross-validation is not asymptotically optimal for choosing between √ n -differentiable statistics but leave- d -out cross-validation is optimal when d ∞ at the appropriate rate.  相似文献   

7.
This paper demonstrates that cross-validation (CV) and Bayesian adaptive bandwidth selection can be applied in the estimation of associated kernel discrete functions. This idea is originally proposed by Brewer [A Bayesian model for local smoothing in kernel density estimation, Stat. Comput. 10 (2000), pp. 299–309] to derive variable bandwidths in adaptive kernel density estimation. Our approach considers the adaptive binomial kernel estimator and treats the variable bandwidths as parameters with beta prior distribution. The best variable bandwidth selector is estimated by the posterior mean in the Bayesian sense under squared error loss. Monte Carlo simulations are conducted to examine the performance of the proposed Bayesian adaptive approach in comparison with the performance of the Asymptotic mean integrated squared error estimator and CV technique for selecting a global (fixed) bandwidth proposed in Kokonendji and Senga Kiessé [Discrete associated kernels method and extensions, Stat. Methodol. 8 (2011), pp. 497–516]. The Bayesian adaptive bandwidth estimator performs better than the global bandwidth, in particular for small and moderate sample sizes.  相似文献   

8.
In linear quantile regression, the regression coefficients for different quantiles are typically estimated separately. Efforts to improve the efficiency of estimators are often based on assumptions of commonality among the slope coefficients. We propose instead a two-stage procedure whereby the regression coefficients are first estimated separately and then smoothed over quantile level. Due to the strong correlation between coefficient estimates at nearby quantile levels, existing bandwidth selectors will pick bandwidths that are too small. To remedy this, we use 10-fold cross-validation to determine a common bandwidth inflation factor for smoothing the intercept as well as slope estimates. Simulation results suggest that the proposed method is effective in pooling information across quantile levels, resulting in estimates that are typically more efficient than the separately obtained estimates and the interquantile shrinkage estimates derived using a fused penalty function. The usefulness of the proposed method is demonstrated in a real data example.  相似文献   

9.
Strategies for improving fixed non-negative kernel estimators have focused on reducing the bias, either by employing higher-order kernels or by adjusting the bandwidth locally. Intuitively, bandwidths in the tails should be relatively larger in order to reduce wiggles since there is less data available in the tails. We show that in regions where the density function is convex, it is theoretically possible to find local bandwidths such that the pointwise bias is exactly zero. The corresponding pointwise mean squared error converges at the parametric rate of O ( n −1 ) rather than the slower O ( n −4/5). These so-called zero-bias bandwidths are constant and are usually orders of magnitude larger than the optimal locally adaptive bandwidths predicted by asymptotic mean squared error analysis. We describe data-based algorithms for estimating zero-bias bandwidths over intervals where the density is convex. We find that our particular density estimator attains the usual O ( n −4/5) rate. However, we demonstrate that the algorithms can provide significant improvement in mean squared error, often clearly visually superior curves, and a new operating point in the usual bias-variance tradeoff.  相似文献   

10.
We treat a non parametric estimator for joint probability mass function, based on multivariate discrete associated kernels which are appropriated for multivariate count data of small and moderate sample sizes. Bayesian adaptive estimation of the vector of bandwidths using the quadratic and entropy loss functions is considered. Exact formulas for the posterior distribution and the vector of bandwidths are obtained. Numerical studies indicate that the performance of our approach is better, comparing with other bandwidth selection techniques using integrated squared error as criterion. Some applications are made on real data sets.  相似文献   

11.
A new procedure is proposed for deriving variable bandwidths in univariate kernel density estimation, based upon likelihood cross-validation and an analysis of a Bayesian graphical model. The procedure admits bandwidth selection which is flexible in terms of the amount of smoothing required. In addition, the basic model can be extended to incorporate local smoothing of the density estimate. The method is shown to perform well in both theoretical and practical situations, and we compare our method with those of Abramson (The Annals of Statistics 10: 1217–1223) and Sain and Scott (Journal of the American Statistical Association 91: 1525–1534). In particular, we note that in certain cases, the Sain and Scott method performs poorly even with relatively large sample sizes.We compare various bandwidth selection methods using standard mean integrated square error criteria to assess the quality of the density estimates. We study situations where the underlying density is assumed both known and unknown, and note that in practice, our method performs well when sample sizes are small. In addition, we also apply the methods to real data, and again we believe our methods perform at least as well as existing methods.  相似文献   

12.
Likelihood cross-validation for kernel density estimation is known to be sensitive to extreme observations and heavy-tailed distributions. We propose a robust likelihood-based cross-validation method to select bandwidths in multivariate density estimations. We derive this bandwidth selector within the framework of robust maximum likelihood estimation. This method establishes a smooth transition from likelihood cross-validation for nonextreme observations to least squares cross-validation for extreme observations, thereby combining the efficiency of likelihood cross-validation and the robustness of least-squares cross-validation. We also suggest a simple rule to select the transition threshold. We demonstrate the finite sample performance and practical usefulness of the proposed method via Monte Carlo simulations and a real data application on Chinese air pollution.  相似文献   

13.
Summary.  Smoothing splines via the penalized least squares method provide versatile and effective nonparametric models for regression with Gaussian responses. The computation of smoothing splines is generally of the order O ( n 3), n being the sample size, which severely limits its practical applicability. We study more scalable computation of smoothing spline regression via certain low dimensional approximations that are asymptotically as efficient. A simple algorithm is presented and the Bayes model that is associated with the approximations is derived, with the latter guiding the porting of Bayesian confidence intervals. The practical choice of the dimension of the approximating space is determined through simulation studies, and empirical comparisons of the approximations with the exact solution are presented. Also evaluated is a simple modification of the generalized cross-validation method for smoothing parameter selection, which to a large extent fixes the occasional undersmoothing problem that is suffered by generalized cross-validation.  相似文献   

14.
The geographical relative risk function is a useful tool for investigating the spatial distribution of disease based on case and control data. The most common way of estimating this function is using the ratio of bivariate kernel density estimates constructed from the locations of cases and controls, respectively. An alternative is to use a local-linear (LL) estimator of the log-relative risk function. In both cases, the choice of bandwidth is critical. In this article, we examine the relative performance of the two estimation techniques using a variety of data-driven bandwidth selection methods, including likelihood cross-validation (CV), least-squares CV, rule-of-thumb reference methods, and a new approximate plug-in (PI) bandwidth for the LL estimator. Our analysis includes the comparison of asymptotic results; a simulation study; and application of the estimators on two real data sets. Our findings suggest that the density ratio method implemented with the least-squares CV bandwidth selector is generally best, with the LL estimator with PI bandwidth being competitive in applications with strong large-scale trends but much worse in situations with elliptical clusters.  相似文献   

15.
Recent contributions to kernel smoothing show that the performance of cross-validated bandwidth selectors improves significantly from indirectness and that the recent do-validated method seems to provide the most practical alternative among these methods. In this paper we show step by step how classical cross-validation improves in theory, as well as in practice, from indirectness and that do-validated estimators improve in theory, but not in practice, from further indirectness. This paper therefore provides a strong support for the practical and theoretical properties of do-validated bandwidth selection. Do-validation is currently being introduced to survival analysis in a number of contexts and this paper provides evidence that this might be the immediate step forward.  相似文献   

16.
Data-based choice of the bandwidth is an important problem in kernel density estimation. The pseudo-likelihood and the least-squares cross-validation bandwidth selectors are well known, but widely criticized in the literature. For heavy-tailed distributions, the L1 distance between the pseudo-likelihood-based estimator and the density does not seem to converge in probability to zero with increasing sample size. Even for normal-tailed densities, the rate of L1 convergence is disappointingly slow. In this article, we report an interesting finding that with minor modifications both the cross-validation methods can be implemented effectively, even for heavy-tailed densities. For both these estimators, the L1 distance (from the density) are shown to converge completely to zero irrespective of the tail of the density. The expected L1 distance also goes to zero. These results hold even in the presence of a strongly mixing-type dependence. Monte Carlo simulations and analysis of the Old Faithful geyser data suggest that if implemented appropriately, contrary to the traditional belief, the cross-validation estimators compare well with the sophisticated plug-in and bootstrap-based estimators.  相似文献   

17.
This paper studies bandwidth selection for kernel estimation of derivatives of multidimensional conditional densities, a non-parametric realm unexplored in the literature. This paper extends Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014] in its examination of conditional multivariate densities, derives and presents criteria for arbitrary kernel order and density dimension, shows consistency of the estimators, and investigates a minimization criterion which jointly estimates numerator and denominator bandwidths. I conduct a Monte Carlo simulation study for various orders of kernels in the Gaussian family and compare the new cross validation criterion with those implied by Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014]. The paper finds that higher order kernels become increasingly important as the dimension of the distribution increases. I find that the cross validation criterion developed in this paper that jointly estimates the derivative of the joint density (numerator) and the marginal density (denominator) does orders of magnitude better than criteria that estimate the bandwidths separately. I further find that using the infinite order Dirichlet kernel tends to have the best results.  相似文献   

18.
This work deals with semiparametric kernel estimator of probability mass functions which are assumed to be modified Poisson distributions. This semiparametric approach is based on discrete associated kernel method appropriated for modelling count data; in particular, the famous discrete symmetric triangular kernels are used. Two data-driven bandwidth selection procedures are investigated and an explicit expression of optimal bandwidth not available until now is provided. Moreover, some asymptotic properties of the cross-validation criterion adapted for discrete semiparametric kernel estimation are studied. Finally, to measure the performance of semiparametric estimator according to each type of bandwidth parameter, some applications are realized on three real count data-sets from sociology and biology.  相似文献   

19.
We study the problem of selecting a regularization parameter in penalized Gaussian graphical models. When the goal is to obtain a model with good predictive power, cross-validation is the gold standard. We present a new estimator of Kullback–Leibler loss in Gaussian Graphical models which provides a computationally fast alternative to cross-validation. The estimator is obtained by approximating leave-one-out-cross-validation. Our approach is demonstrated on simulated data sets for various types of graphs. The proposed formula exhibits superior performance, especially in the typical small sample size scenario, compared to other available alternatives to cross-validation, such as Akaike's information criterion and Generalized approximate cross-validation. We also show that the estimator can be used to improve the performance of the Bayesian information criterion when the sample size is small.  相似文献   

20.
This paper presents an approach to cross-validated window width choice which greatly reduces computation time, which can be used regardless of the nature of the kernel function, and which avoids the use of the Fast Fourier Transform. This approach is developed for window width selection in the context of kernel estimation of an unknown conditional mean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号