首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discriminating between the generalized Rayleigh and Weibull distributions   总被引:1,自引:0,他引:1  
Generalized Rayleigh (GR) and Weibull (WE) distributions are used quite effectively for analysing skewed lifetime data. In this paper, we consider the problem of selecting either GR or WE distribution as a more appropriate fitting model for a given data set. We use the ratio of maximized likelihoods (RML) for discriminating between the two distributions. The asymptotic and simulated distributions of the logarithm of the RML are applied to determine the probability of correctly selecting between these two families of distributions. It is examined numerically that the asymptotic results work quite well even for small sample sizes. A real data set involving the annual rainfall recorded at Los Angeles Civic Center during 25 years is analysed to illustrate the procedures developed here.  相似文献   

2.
Log-normal and Weibull distributions are the two most popular distributions for analysing lifetime data. In this paper, we consider the problem of discriminating between the two distribution functions. It is assumed that the data are coming either from log-normal or Weibull distributions and that they are Type-II censored. We use the difference of the maximized log-likelihood functions, in discriminating between the two distribution functions. We obtain the asymptotic distribution of the discrimination statistic. It is used to determine the probability of correct selection in this discrimination process. We perform some simulation studies to observe how the asymptotic results work for different sample sizes and for different censoring proportions. It is observed that the asymptotic results work quite well even for small sizes if the censoring proportions are not very low. We further suggest a modified discrimination procedure. Two real data sets are analysed for illustrative purposes.  相似文献   

3.
In this article, we consider the problem of the model selection/discrimination among three different positively skewed lifetime distributions. All these three distributions, namely; the Weibull, log-normal, and log-logistic, have been used quite effectively to analyze positively skewed lifetime data. In this article, we have used three different methods to discriminate among these three distributions. We have used the maximized likelihood method to choose the correct model and computed the asymptotic probability of correct selection. We have further obtained the Fisher information matrices of these three different distributions and compare them for complete and censored observations. These measures can be used to discriminate among these three distributions. We have also proposed to use the Kolmogorov–Smirnov distance to choose the correct model. Extensive simulations have been performed to compare the performances of the three different methods. It is observed that each method performs better than the other two for some distributions and for certain range of parameters. Further, the loss of information due to censoring are compared for these three distributions. The analysis of a real dataset has been performed for illustrative purposes.  相似文献   

4.
The generalized Rayleigh distribution was introduced and studied quite effectively in the literature. The closeness and separation between the distributions are extremely important for analyzing any lifetime data. In this spirit, both the generalized Rayleigh and Weibull distributions can be used for analyzing skewed datasets. In this article, we compare these two distributions based on the Fisher information measures and use it for discrimination purposes. It is evident that the Fisher information measures play an important role in separating between the distributions. The total information measures and the variances of the different percentile estimators are computed and presented. A real life dataset is analyzed for illustration purposes and a numerical comparison study is performed to assess our procedures in separating between these two distributions.  相似文献   

5.
We propose a new distribution, the so-called beta-Weibull geometric distribution, whose failure rate function can be decreasing, increasing or an upside-down bathtub. This distribution contains special sub-models the exponential geometric [K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], beta exponential [S. Nadarajah and S. Kotz, The exponentiated type distributions, Acta Appl. Math. 92 (2006), pp. 97–111; The beta exponential distribution, Reliab. Eng. Syst. Saf. 91 (2006), pp. 689–697], Weibull geometric [W. Barreto-Souza, A.L. de Morais, and G.M. Cordeiro, The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645–657], generalized exponential geometric [R.B. Silva, W. Barreto-Souza, and G.M. Cordeiro, A new distribution with decreasing, increasing and upside-down bathtub failure rate, Comput. Statist. Data Anal. 54 (2010), pp. 935–944; G.O. Silva, E.M.M. Ortega, and G.M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal. 16 (2010), pp. 409–430] and beta Weibull [S. Nadarajah, G.M. Cordeiro, and E.M.M. Ortega, General results for the Kumaraswamy-G distribution, J. Stat. Comput. Simul. (2011). DOI: 10.1080/00949655.2011.562504] distributions, among others. The density function can be expressed as a mixture of Weibull density functions. We derive expansions for the moments, generating function, mean deviations and Rénvy entropy. The parameters of the proposed model are estimated by maximum likelihood. The model fitting using envelops was conducted. The proposed distribution gives a good fit to the ozone level data in New York.  相似文献   

6.
Abstract

In this article, we introduce a new distribution for modeling positive data sets with high kurtosis, the modified slashed generalized exponential distribution. The new model can be seen as a modified version of the slashed generalized exponential distribution. It arises as a quotient of two independent random variables, one being a generalized exponential distribution in the numerator and a power of the exponential distribution in the denominator. We studied various structural properties (such as the stochastic representation, density function, hazard rate function and moments) and discuss moment and maximum likelihood estimating approaches. Two real data sets are considered in which the utility of the new model in the analysis with high kurtosis is illustrated.  相似文献   

7.
In this paper, we suggest classification procedures of an observation into one of two exponential populations assuming a known ordering between population parameters. We propose classification rules when either location or scale parameters are ordered. Some of these classification rules under ordering are better than usual classification rules with respect to the expected probability of correct classification. We also derive likelihood ratio-based classification rules. Comparison of these classification rules has been done using Monte Carlo simulations.  相似文献   

8.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

9.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

10.
ABSTRACT

In this paper two probability distributions are analyzed which are formed by compounding inverse Weibull with zero-truncated Poisson and geometric distributions. The distributions can be used to model lifetime of series system where the lifetimes follow inverse Weibull distribution and the subgroup size being random follows either geometric or zero-truncated Poisson distribution. Some of the important statistical and reliability properties of each of the distributions are derived. The distributions are found to exhibit both monotone and non-monotone failure rates. The parameters of the distributions are estimated using the expectation-maximization algorithm and the method of minimum distance estimation. The potentials of the distributions are explored through three real life data sets and are compared with similar compounded distributions, viz. Weibull-geometric, Weibull-Poisson, exponential-geometric and exponential-Poisson distributions.  相似文献   

11.
In this article, the discrete analog of Weibull geometric distribution is introduced. Discrete Weibull, discrete Rayleigh, and geometric distributions are submodels of this distribution. Some basic distributional properties, hazard function, random number generation, moments, and order statistics of this new discrete distribution are studied. Estimation of the parameters are done using maximum likelihood method. The applications of the distribution is established using two datasets.  相似文献   

12.
Let X U (1) < X U (2) < … < X U ( n ) < … be the sequence of the upper record values from a population with common distribution function F. In this paper, we first give a theorem to characterize the generalized mixtures of geometric distribution by the relation between E[(X U ( n +1)X U ( n ))2|X U ( n ) = x] and the function of the failure rate of the distribution, for any positive integer n. Secondly, we also use the same relation to characterize the generalized mixtures of exponential distribution. The characterizing relations were motivated by the work of Balakrishnan and Balasubramanian (1995). Received: March 31, 1999; revised version: November 22, 1999  相似文献   

13.
Estimation is considered for a class of models which are simple extensions of the generalized extreme value (GEV) distribution, suitable for introducing time dependence into models which are otherwise only spatially dependent. Maximum likelihood estimation and the method of probability weighted moment estimation are identified as most useful for fitting these models. The relative merits of these methods, and others, is discussed in the context of estimation for the GEV distribution, with particular reference to the non - regularity of the GEV distribution for particular parameter values. In the case of maximum likelihood estimation, first and second derivatives of the log likelihood are evaluated for the models.  相似文献   

14.
Log-normal and log-logistic distributions are often used to analyze lifetime data. For certain ranges of the parameters, the shape of the probability density functions or the hazard functions can be very similar in nature. It might be very difficult to discriminate between the two distribution functions. In this article, we consider the discrimination procedure between the two distribution functions. We use the ratio of maximized likelihood for discrimination purposes. The asymptotic properties of the proposed criterion are investigated. It is observed that the asymptotic distributions are independent of the unknown parameters. The asymptotic distributions are used to determine the minimum sample size needed to discriminate between these two distribution functions for a user specified probability of correct selection. We perform some simulation experiments to see how the asymptotic results work for small sizes. For illustrative purpose, two data sets are analyzed.  相似文献   

15.
Generalized exponential distributions   总被引:8,自引:0,他引:8  
The three-parameter gamma and three-parameter Weibull distributions are commonly used for analysing any lifetime data or skewed data. Both distributions have several desirable properties, and nice physical interpretations. Because of the scale and shape parameters, both have quite a bit of flexibility for analysing different types of lifetime data. They have increasing as well as decreasing hazard rate depending on the shape parameter. Unfortunately both distributions also have certain drawbacks. This paper considers a three-parameter distribution which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar, Srivastava & Freimer (1995) when the location parameter is not present. The study examines different properties of this model and observes that this family has some interesting features which are quite similar to those of the gamma family and the Weibull family, and certain distinct properties also. It appears this model can be used as an alternative to the gamma model or the Weibull model in many situations. One dataset is provided where the three-parameter generalized exponential distribution fits better than the three-parameter Weibull distribution or the three-parameter gamma distribution.  相似文献   

16.
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.  相似文献   

17.
A new generalization of the logarithmic series distribution is presented based on a generalized negative binomial distribution obtained from a generalized Poisson distribution compounded with the truncated gamma distribution. By length biasing this generalized log-series distribution, another generalized geometric distribution is uresented. For the generalized log-series distribution, maximum likelihood estimators are developed and an example is presented for illustration.  相似文献   

18.
This paper develops Bayesian inference of extreme value models with a flexible time-dependent latent structure. The generalized extreme value distribution is utilized to incorporate state variables that follow an autoregressive moving average (ARMA) process with Gumbel-distributed innovations. The time-dependent extreme value distribution is combined with heavy-tailed error terms. An efficient Markov chain Monte Carlo algorithm is proposed using a state-space representation with a finite mixture of normal distributions to approximate the Gumbel distribution. The methodology is illustrated by simulated data and two different sets of real data. Monthly minima of daily returns of stock price index, and monthly maxima of hourly electricity demand are fit to the proposed model and used for model comparison. Estimation results show the usefulness of the proposed model and methodology, and provide evidence that the latent autoregressive process and heavy-tailed errors play an important role to describe the monthly series of minimum stock returns and maximum electricity demand.  相似文献   

19.
A generalized version of inverted exponential distribution (IED) is introduced in this paper. This lifetime distribution is capable of modelling various shapes of failure rates, and hence various shapes of ageing criteria. The model can be considered as another useful two-parameter generalization of the IED. Statistical and reliability properties of the generalized inverted exponential distribution are derived. Maximum likelihood estimation and least square estimation are used to evaluate the parameters and the reliability of the distribution. Properties of the estimates are also studied.  相似文献   

20.
The inverted generalized exponential distribution is defined as an alternative model for lifetime data. The existence of moments of this distribution is shown to hold under some restrictions. However, all the moments exist for the truncated inverted generalized exponential distribution and closed-form expressions for them are derived in this article. The distributional properties of this truncated distribution are studied. Maximum likelihood estimation method is discussed for the estimation of the parameters of the distribution both theoretically and empirically. In order to see the modeling performance of the distribution, two real datasets are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号