首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generally, confidence regions for the probabilities of a multinomial population are constructed based on the Pearson χ2 statistic. Morales et al. (Bootstrap confidence regions in multinomial sampling. Appl Math Comput. 2004;155:295–315) considered the bootstrap and asymptotic confidence regions based on a broader family of test statistics known as power-divergence test statistics. In this study, we extend their work and propose penalized power-divergence test statistics-based confidence regions. We only consider small sample sizes where asymptotic properties fail and alternative methods are needed. Both bootstrap and asymptotic confidence regions are constructed. We consider the percentile and the bias corrected and accelerated bootstrap confidence regions. The latter confidence region has not been studied previously for the power-divergence statistics much less for the penalized ones. Designed simulation studies are carried out to calculate average coverage probabilities. Mean absolute deviation between actual and nominal coverage probabilities is used to compare the proposed confidence regions.  相似文献   

2.
Confidence intervals for a single parameter are spanned by quantiles of a confidence distribution, and one‐sided p‐values are cumulative confidences. Confidence distributions are thus a unifying format for representing frequentist inference for a single parameter. The confidence distribution, which depends on data, is exact (unbiased) when its cumulative distribution function evaluated at the true parameter is uniformly distributed over the unit interval. A new version of the Neyman–Pearson lemma is given, showing that the confidence distribution based on the natural statistic in exponential models with continuous data is less dispersed than all other confidence distributions, regardless of how dispersion is measured. Approximations are necessary for discrete data, and also in many models with nuisance parameters. Approximate pivots might then be useful. A pivot based on a scalar statistic determines a likelihood in the parameter of interest along with a confidence distribution. This proper likelihood is reduced of all nuisance parameters, and is appropriate for meta‐analysis and updating of information. The reduced likelihood is generally different from the confidence density. Confidence distributions and reduced likelihoods are rooted in Fisher–Neyman statistics. This frequentist methodology has many of the Bayesian attractions, and the two approaches are briefly compared. Concepts, methods and techniques of this brand of Fisher–Neyman statistics are presented. Asymptotics and bootstrapping are used to find pivots and their distributions, and hence reduced likelihoods and confidence distributions. A simple form of inverting bootstrap distributions to approximate pivots of the abc type is proposed. Our material is illustrated in a number of examples and in an application to multiple capture data for bowhead whales.  相似文献   

3.
Effective implementation of likelihood inference in models for high‐dimensional data often requires a simplified treatment of nuisance parameters, with these having to be replaced by handy estimates. In addition, the likelihood function may have been simplified by means of a partial specification of the model, as is the case when composite likelihood is used. In such circumstances tests and confidence regions for the parameter of interest may be constructed using Wald type and score type statistics, defined so as to account for nuisance parameter estimation or partial specification of the likelihood. In this paper a general analytical expression for the required asymptotic covariance matrices is derived, and suggestions for obtaining Monte Carlo approximations are presented. The same matrices are involved in a rescaling adjustment of the log likelihood ratio type statistic that we propose. This adjustment restores the usual chi‐squared asymptotic distribution, which is generally invalid after the simplifications considered. The practical implication is that, for a wide variety of likelihoods and nuisance parameter estimates, confidence regions for the parameters of interest are readily computable from the rescaled log likelihood ratio type statistic as well as from the Wald type and score type statistics. Two examples, a measurement error model with full likelihood and a spatial correlation model with pairwise likelihood, illustrate and compare the procedures. Wald type and score type statistics may give rise to confidence regions with unsatisfactory shape in small and moderate samples. In addition to having satisfactory shape, regions based on the rescaled log likelihood ratio type statistic show empirical coverage in reasonable agreement with nominal confidence levels.  相似文献   

4.
Abstract.  We propose an easy to implement method for making small sample parametric inference about the root of an estimating equation expressible as a quadratic form in normal random variables. It is based on saddlepoint approximations to the distribution of the estimating equation whose unique root is a parameter's maximum likelihood estimator (MLE), while substituting conditional MLEs for the remaining (nuisance) parameters. Monotoncity of the estimating equation in its parameter argument enables us to relate these approximations to those for the estimator of interest. The proposed method is equivalent to a parametric bootstrap percentile approach where Monte Carlo simulation is replaced by saddlepoint approximation. It finds applications in many areas of statistics including, nonlinear regression, time series analysis, inference on ratios of regression parameters in linear models and calibration. We demonstrate the method in the context of some classical examples from nonlinear regression models and ratios of regression parameter problems. Simulation results for these show that the proposed method, apart from being generally easier to implement, yields confidence intervals with lengths and coverage probabilities that compare favourably with those obtained from several competing methods proposed in the literature over the past half-century.  相似文献   

5.
Conditional parametric bootstrapping is defined as the samples obtained by performing the simulations in such a way that the estimator is kept constant and equal to the estimate obtained from the data. Order statistics of the bootstrap replicates of the parameter chosen in each simulation provide exact confidence intervals, in a probabilistic sense, in models with one parameter under quite general conditions. The method is still exact in the case of nuisance parameters when these are location and scale parameters, and the bootstrapping is based on keeping the maximum-likelihood estimates constant. The method is also exact if there exists a sufficient statistic for the nuisance parameters and if the simulations are performed conditioning on this statistic. The technique may also be used to construct prediction intervals. These are generally not exact, but are likely to be good approximations.  相似文献   

6.
Eunju Hwang 《Statistics》2017,51(4):844-861
This paper studies the stationary bootstrap applicability for realized covariations of high frequency asynchronous financial data. The stationary bootstrap method, which is characterized by a block-bootstrap with random block length, is applied to estimate the integrated covariations. The bootstrap realized covariance, bootstrap realized regression coefficient and bootstrap realized correlation coefficient are proposed, and the validity of the stationary bootstrapping for them is established both for large sample and for finite sample. Consistencies of bootstrap distributions are established, which provide us valid stationary bootstrap confidence intervals. The bootstrap confidence intervals do not require a consistent estimator of a nuisance parameter arising from nonsynchronous unequally spaced sampling while those based on a normal asymptotic theory require a consistent estimator. A Monte-Carlo comparison reveals that the proposed stationary bootstrap confidence intervals have better coverage probabilities than those based on normal approximation.  相似文献   

7.
We consider the problem of finding an equi-tailed confidence interval, with coverage probability (1-α), for a scalar parameter θ0 in the presence of a (possibly infinite dimensional) nuisance parameter ψ0. It is supposed that the value taken by θ0 does not restrict the value that ψ0 may take and vice-versa. Given a sensible estimate ψn of ψ0, profile bootstrap confidence interval for θ0 is defined to be the exact equi-tailed confidence interval with coverage probability (1-α) assuming that ψ0n. We compare the properties of the profile bootstrap confidence interval and the ordinary bootstrap confidence interval when they are based on studentised and unstudentised quantities. Under mild regularity conditions the profile bootstrap confidence interval is always a subset of the set of allowable values of θ0 and is transformation-respecting when based on either an unstudentised quantity or a studentised quantity satisfying certain restrictions. As a confidence interval for the autoregressive parameter of an AR(1) process, the profile bootstrap confidence interval has important advantages over the ordinary bootstrap confidence interval based on a studentised quantity.  相似文献   

8.
The purpose of this article is to use the empirical likelihood method to study construction of the confidence region for the parameter of interest in semiparametric varying-coefficient heteroscedastic partially linear errors-in-variables models. When the variance functions of the errors are known or unknown, we propose the empirical log-likelihood ratio statistics for the parameter of interest. For each case, a nonparametric version of Wilks’ theorem is derived. The results are then used to construct confidence regions of the parameter. A simulation study is carried out to assess the performance of the empirical likelihood method.  相似文献   

9.
In this paper we explore the theoretical and practical implications of using bootstrap test inversion to construct confidence intervals. In the presence of nuisance parameters, we show that the coverage error of such intervals is O ( n −1/2) which may be reduced to O ( n −1) if a Studentized statistic is used. We present three simulation studies and compare the performance of test inversion methods with established methods on the problem of estimating a confidence interval for the dose–response parameter in models of the Japanese atomic bomb survivors data.  相似文献   

10.
Scoring rules give rise to methods for statistical inference and are useful tools to achieve robustness or reduce computations. Scoring rule inference is generally performed through first-order approximations to the distribution of the scoring rule estimator or of the ratio-type statistic. In order to improve the accuracy of first-order methods even in simple models, we propose bootstrap adjustments of signed scoring rule root statistics for a scalar parameter of interest in presence of nuisance parameters. The method relies on the parametric bootstrap approach that avoids onerous calculations specific of analytical adjustments. Numerical examples illustrate the accuracy of the proposed method.  相似文献   

11.
The purpose of this article is to use the empirical likelihood method to study construction of the confidence region for the parameter of interest in heteroscedastic partially linear errors-in-variables model with martingale difference errors. When the variance functions of the errors are known or unknown, we propose the empirical log-likelihood ratio statistics for the parameter of interest. For each case, a nonparametric version of Wilks’ theorem is derived. The results are then used to construct confidence regions of the parameter. A simulation study is carried out to assess the performance of the empirical likelihood method.  相似文献   

12.
In this article, we consider inference about the correlation coefficients of several bivariate normal distributions. We first propose computational approach tests for testing the equality of the correlation coefficients. In fact, these approaches are parametric bootstrap tests, and simulation studies show that they perform very satisfactory, and the actual sizes of these tests are better than other existing approaches. We also present a computational approach test and a parametric bootstrap confidence interval for inference about the parameter of common correlation coefficient. At the end, all the approaches are illustrated using two real examples.  相似文献   

13.
Approximate conditional inference is developed for the linear calibration problem. It is shown that this problem can be transformed so that the primary parameter is an angle, the nuisance parameter is a radial distance, and the density is rotationally symmetric. Were the nuisance parameter known, exact location confidence intervals would be available by location of structural arguments. A confidence distribution is used to average out the nuisance parameter yielding an approximate confidence interval that involves a precision indicator derived from the radial distance. Some difficulties with the ordinary solution are avoided by the conditional procedure.  相似文献   

14.
Nuisance parameter elimination is a central problem in capture–recapture modelling. In this paper, we consider a closed population capture–recapture model which assumes the capture probabilities varies only with the sampling occasions. In this model, the capture probabilities are regarded as nuisance parameters and the unknown number of individuals is the parameter of interest. In order to eliminate the nuisance parameters, the likelihood function is integrated with respect to a weight function (uniform and Jeffrey's) of the nuisance parameters resulting in an integrated likelihood function depending only on the population size. For these integrated likelihood functions, analytical expressions for the maximum likelihood estimates are obtained and it is proved that they are always finite and unique. Variance estimates of the proposed estimators are obtained via a parametric bootstrap resampling procedure. The proposed methods are illustrated on a real data set and their frequentist properties are assessed by means of a simulation study.  相似文献   

15.
In this note we examine the problem of estimating the mean of a Poisson distribution when a nuisance parameter is present. Using a condition of Cox (1958) about ancillarity in the presence of a nuisance parameter, we justify that inference about the parameter should be carried out using the conditional distribution given the appropriate ancillary statistics. A small simulation study has been done to compare the performance of the conditional likelihood approach and the standard likelihood approach.  相似文献   

16.
In this paper, a censored linear errors-in-variables model is investigated. The asymptotic normality of the unknown parameter's estimator is obtained. Two empirical log-likelihood ratio statistics for the unknown parameter in the model are suggested. It is proved that the proposed statistics are asymptotically chi-squared under some mild conditions, and hence can be used to construct the confidence regions of the parameter of interest. Finite sample performance of the proposed method is illustrated in a simulation study.  相似文献   

17.
Variable selection in regression analysis is of importance because it can simplify model and enhance predictability. After variable selection, however, the resulting working model may be biased when it does not contain all of significant variables. As a result, the commonly used parameter estimation is either inconsistent or needs estimating high-dimensional nuisance parameter with very strong assumptions for consistency, and the corresponding confidence region is invalid when the bias is relatively large. We in this paper introduce a simulation-based procedure to reformulate a new model so as to reduce the bias of the working model, with no need to estimate high-dimensional nuisance parameter. The resulting estimators of the parameters in the working model are asymptotic normally distributed whether the bias is small or large. Furthermore, together with the empirical likelihood, we build simulation-based confidence regions for the parameters in the working model. The newly proposed estimators and confidence regions outperform existing ones in the sense of consistency.  相似文献   

18.
In the nonparametric setting, the standard bootstrap method is based on the empirical distribution function of a random sample. The author proposes, by means of the empirical likelihood technique, an alternative bootstrap procedure under a nonparametric model in which one has some auxiliary information about the population distribution. By proving the almost sure weak convergence of the modified bootstrapped empirical process, the validity of the proposed bootstrap procedure is established. This new result is used to obtain bootstrap confidence bands for the population distribution function and to perform the bootstrap Kolmogorov test in the presence of auxiliary information. Other applications include bootstrapping means and variances with auxiliary information. Three simulation studies are presented to demonstrate the performance of the proposed bootstrap procedure for small samples.  相似文献   

19.
The magnitude of light intensity of many stars varies over time in a periodic way. Therefore, estimation of period and making inference about this parameter are of great interest in astronomy. The periodogram can be used to estimate period, properly. Bootstrap confidence intervals for period suggested here, are based on using the periodogram and constructed by percentile-t methods. We prove that the equal-tailed percentile-t bootstrap confidence intervals for period have an error of order n ?1. We also show that the symmetric percentile-t bootstrap confidence intervals reduce the error to order n ?2, and hence have a better performance. Finally, we assess the theoretical results by conducting a simulation study, compare the results with the coverages of percentile bootstrap confidence intervals for period and then analyze a real data set related to the eclipsing system R Canis Majoris collected by Shiraz Biruni Observatory.  相似文献   

20.
This article deals with the issue of using a suitable pseudo-likelihood, instead of an integrated likelihood, when performing Bayesian inference about a scalar parameter of interest in the presence of nuisance parameters. The proposed approach has the advantages of avoiding the elicitation on the nuisance parameters and the computation of multidimensional integrals. Moreover, it is particularly useful when it is difficult, or even impractical, to write the full likelihood function.

We focus on Bayesian inference about a scalar regression coefficient in various regression models. First, in the context of non-normal regression-scale models, we give a theroetical result showing that there is no loss of information about the parameter of interest when using a posterior distribution derived from a pseudo-likelihood instead of the correct posterior distribution. Second, we present non trivial applications with high-dimensional, or even infinite-dimensional, nuisance parameters in the context of nonlinear normal heteroscedastic regression models, and of models for binary outcomes and count data, accounting also for possibile overdispersion. In all these situtations, we show that non Bayesian methods for eliminating nuisance parameters can be usefully incorporated into a one-parameter Bayesian analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号