首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Hu Yang 《Statistics》2013,47(6):759-766
In this paper, we introduce a stochastic restricted kd class estimator for the vector of parameters in a linear model when additional linear restrictions on the parameter vector are assumed to hold. The stochastic restricted kd class estimator is a generalization of the ordinary mixed estimator and the kd class estimator. We show that our new biased estimator is superior in the mean squared error matrix sense to the kd class estimator [S. Sakall?o?lu and S. Kaçiranlar, A new biased estimator based on ridge estimation, Statist. Papers 49 (2008), pp. 669–689] and the stochastic restricted Liu estimator [H. Yang and J.W. Xu, An alternative stochastic restricted Liu estimator in linear regression, Statist. Papers 50 (2009), pp. 639–647]. Finally, a numerical example is given to show the theoretical results.  相似文献   

2.
Autocorrelation in errors and multicollinearity among the regressors are serious problems in regression analysis. The aim of this paper is to examine multicollinearity and autocorrelation problems concurrently and to compare the r ? k class estimator to the generalized least squares estimator, the principal components regression estimator and the ridge regression estimator by the scalar and matrix mean square error criteria in the linear regression model with correlated errors.  相似文献   

3.
4.
Breslow and Holubkov (J Roy Stat Soc B 59:447–461 1997a) developed semiparametric maximum likelihood estimation for two-phase studies with a case–control first phase under a logistic regression model and noted that, apart for the overall intercept term, it was the same as the semiparametric estimator for two-phase studies with a prospective first phase developed in Scott and Wild (Biometrica 84:57–71 1997). In this paper we extend the Breslow–Holubkov result to general binary regression models and show that it has a very simple relationship with its prospective first-phase counterpart. We also explore why the design of the first phase only affects the intercept of a logistic model, simplify the calculation of standard errors, establish the semiparametric efficiency of the Breslow–Holubkov estimator and derive its asymptotic distribution in the general case.  相似文献   

5.
The purpose of the study is to estimate the population size under a truncated count model that accounts for heterogeneity. The proposed estimator is based on the Conway–Maxwell–Poisson distribution. The benefit of using the Conway–Maxwell–Poisson distribution is that it includes the Bernoulli, the Geometric and the Poisson distributions as special cases and, furthermore, allows for heterogeneity. Parameter estimates can be obtained by exploiting the ratios of successive frequency counts in a weighted linear regression framework. The results of the comparisons with Turing’s, the maximum likelihood Poisson, Zelterman’s and Chao’s estimators reveal that our proposal can be beneficially used. Furthermore, our proposal outperforms its competitors under all heterogeneous settings. The empirical examples consider the homogeneous case and several heterogeneous cases, each with its own features, and provide interesting insights on the behavior of the estimators.  相似文献   

6.
We investigate the asymptotic behaviour of the recursive Nadaraya–Watson estimator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced inverse regression method for the estimation of the unknown parameter of the model. On the other hand, we implement a recursive Nadaraya–Watson procedure for the estimation of the regression function which takes into account the previous estimation of the parameter of the semiparametric regression model. We establish the almost sure convergence as well as the asymptotic normality for our Nadaraya–Watson estimate. We also illustrate our semiparametric estimation procedure on simulated data.  相似文献   

7.
We review limit theory and inequalities for the Kaplan–Meier Kaplan and Meier (J Am Stat Assoc 53:457–481, 1958) product limit estimator of a survival function on the whole line . Along the way we provide bounds for the constant in an interesting inequality due to Biotouzé et al. (Ann Inst H Poincaré Probab Stat 35:735–763, 1999), and provide some numerical evidence in support of one of their conjectures. Supported in part by NSF grant DMS-0503822 and by NI-AID grant 2R01 AI291968-04.  相似文献   

8.
When quantification of all sampling units is expensive but a set of units can be ranked, without formal measurement, ranked set sampling (RSS) is a cost-efficient alternate to simple random sampling (SRS). In this paper, we study the Kaplan–Meier estimator of survival probability based on RSS under random censoring time setup, and propose nonparametric estimators of the population mean. We present a simulation study to compare the performance of the suggested estimators. It turns out that RSS design can yield a substantial improvement in efficiency over the SRS design. Additionally, we apply the proposed methods to a real data set from an environmental study.  相似文献   

9.
In this paper, we obtain the strong consistency and asymptotic distribution of the Theil–Sen estimator in simple linear regression models with arbitrary error distributions. We show that the Theil–Sen estimator is super-efficient when the error distribution is discontinuous and that its asymptotic distribution may or may not be normal when the error distribution is continuous. We give an example in which the Theil–Sen estimator is not asymptotically normal. A small simulation study is conducted to confirm the super-efficiency and the non-normality of the asymptotic distribution.  相似文献   

10.
A leading multivariate extension of the univariate quantiles is the so-called “spatial” or “geometric” notion, for which sample versions are highly robust and conveniently satisfy a Bahadur–Kiefer representation. Another extension of univariate quantiles has been to univariate U-quantiles, on the basis of which, for example, the well-known Hodges–Lehmann location estimator has a natural formulation. Generalizing both extensions, we introduce multivariate spatial U-quantiles and develop a corresponding Bahadur–Kiefer representation. New statistics based on spatial U-quantiles are presented for nonparametric estimation of multiple regression coefficients, extending the classical Theil–Sen nonparametric simple linear regression slope estimator, and for robust estimation of multivariate dispersion. Some other applications are mentioned as well.  相似文献   

11.
ABSTRACT

We derive the exact distribution of the maximum likelihood estimator of the mean reversion parameter (κ) in the Ornstein–Uhlenbeck process using numerical integration through analytical evaluation of a joint characteristic function. Different scenarios are considered: known or unknown drift term, fixed or random start-up value, and zero or positive κ. Monte Carlo results demonstrate the remarkably reliable performance of our exact approach across all the scenarios. In comparison, misleading results may arise under the asymptotic distributions, including the advocated infill asymptotic distribution, which performs poorly in the tails when there is no intercept in the regression and the starting value of the process is nonzero.  相似文献   

12.
The Frisch–Waugh–Lovell (FWL) (partitioned regression) theorem is essential in regression analysis. This is partly because it is quite useful to derive theoretical results. The lasso regression and the ridge regression, both of which are penalized least-squares regressions, have become popular statistical techniques. This article describes that the FWL theorem remains valid for these penalized least-squares regressions. More precisely, we demonstrate that the covariates corresponding to unpenalized regression parameters in these penalized least-squares regression can be projected out. Some other results related to the FWL theorem in such penalized least-squares regressions are also presented.  相似文献   

13.
In this paper we consider the risk performances of some estimators for both location and scale parameters in a linear regression model under Inagaki’s loss function We prove that the pre-test estimator for location parameter is dominated by the Stein-rule estimator under Inagaki’s loss function when the distribution of error terms is expressed by the scale mixture of normal distribution and the variance of error terms is unknown.. It is an extension of the results in Nagata (1983) to our situation Also we perform numerical calculations to draw the shapes of the risks.  相似文献   

14.
In this paper, we propose a method to assess influence in skew-Birnbaum–Saunders regression models, which are an extension based on the skew-normal distribution of the usual Birnbaum–Saunders (BS) regression model. An interesting characteristic that the new regression model has is the capacity of predicting extreme percentiles, which is not possible with the BS model. In addition, since the observed likelihood function associated with the new regression model is more complex than that from the usual model, we facilitate the parameter estimation using a type-EM algorithm. Moreover, we employ influence diagnostic tools that considers this algorithm. Finally, a numerical illustration includes a brief simulation study and an analysis of real data in order to show the proposed methodology.  相似文献   

15.
Grenander introduced a direct estimator of the mode for a large class of densities. This note considers a large subclass of these densities for which Grenander’s estimator is asymptotically biased. Some of the distributions from this subclass include the F, gamma, and beta for which asymptotic expressions for the bias are given. To reduce the bias, it is recommended to choose larger values for one of the parameters of the estimator when the underlying distribution is nonsymmetric.  相似文献   

16.
In this article, we consider a version of the functional Hodrick–Prescott filter for functional time series. We show that the associated optimal smoothing operator preserves the “noise-to-signal ratio” structure. Moreover, as the main result, we propose a consistent estimator of this optimal smoothing operator.  相似文献   

17.
18.
In this paper we consider a recursive method of Robbins–Monro type to estimate the solution of the linear problem Ax = u, in which the second member is measured with α-mixing errors. We also show the almost complete convergence (a.co) of this algorithm specifying its convergence rate.  相似文献   

19.
In this article, by using the Rosenthal-type inequality and the Bernstein's big-block and small-block procedure, we establish the asymptotic normality for the estimators of non parametric regression model based on ?-mixing errors. The result obtained in the article generalizes some corresponding ones for some dependent random variables.  相似文献   

20.
In this paper, we compare two estimators, the RLE (restricted Liu estimator) and the RLSE (restricted least squares estimator) of parameters in linear models under Gauss–Markov models. Using generalized inverse of matrices, we found some equivalency conditions for the superiority of the RLE with respect to the MSE criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号