首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalization of the exponential distribution is presented. The generalization always has its mode at zero and yet allows for increasing, decreasing and constant hazard rates. It can be used as an alternative to the gamma, Weibull and exponentiated exponential distributions. A comprehensive account of the mathematical properties of the generalization is presented. A real data example is discussed to illustrate its applicability.  相似文献   

2.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

3.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

4.
Abstract

In this article, we introduce a new distribution for modeling positive data sets with high kurtosis, the modified slashed generalized exponential distribution. The new model can be seen as a modified version of the slashed generalized exponential distribution. It arises as a quotient of two independent random variables, one being a generalized exponential distribution in the numerator and a power of the exponential distribution in the denominator. We studied various structural properties (such as the stochastic representation, density function, hazard rate function and moments) and discuss moment and maximum likelihood estimating approaches. Two real data sets are considered in which the utility of the new model in the analysis with high kurtosis is illustrated.  相似文献   

5.
In this paper, a new five-parameter lifetime distribution called beta generalized linear exponential distribution (BGLED) is introduced. It includes at least 17 popular sub-models as special cases such as the beta linear exponential, the beta generalized exponential, and the exponentiated generalized linear distributions. Mathematical and statistical properties of the proposed distribution are discussed in details. In particular, explicit expression for the density function, moments, asymptotics distributions for sample extreme statistics, and other statistical measures are obtained. The estimation of the parameters by the method of maximum-likelihood is discussed and the finite sample properties of the maximum-likelihood estimators (MLEs) are investigated numerically. A real data set is used to demonstrate its superior performance fit over several existing popular lifetime models.  相似文献   

6.
Process capability indices (PCIs) are most effective devices/techniques used in industries for determining the quality of products and performance of manufacturing processes. In this article, we consider the PCI Cpc which is based on the proportion of conformance and is applicable to normally as well as non-normally and continuous as well as discrete distributed processes. In order to estimate the PCI Cpc when the process follows exponentiated exponential distribution, we have used five classical methods of estimation. The performances of these classical estimators are compared with respect to their biases and mean squared errors (MSEs) of the index Cpc through simulation study. Also, the confidence intervals for the index Cpc are constructed using five bootstrap confidence interval (BCIs) methods. Monte Carlo simulation study has been carried out to compare the performances of these five BCIs in terms of their average width and coverage probabilities. Besides, net sensitivity (NS) analysis for the given PCI Cpc is considered. We use two data sets related to electronic and food industries and two failure time data sets to illustrate the performance of the proposed methods of estimation and BCIs. Additionally, we have developed PCI Cpc using aforementioned methods for generalized Rayleigh distribution.  相似文献   

7.
Many if not most lifetime distributions are motivated only by mathematical interest. Here, a new three-parameter distribution motivated mainly by lifetime issues is introduced. Some properties of the new distribution including estimation procedures, univariate generalizations and bivariate generalizations are derived. A real data application is described to show its superior performance versus at least that of 15 of the known lifetime models.  相似文献   

8.
The maximum likelihood and Bayesian approaches have been considered for the two-parameter generalized exponential distribution based on record values with the number of trials following the record values (inter-record times). The maximum likelihood estimates are obtained under the inverse sampling and the random sampling schemes. It is shown that the maximum likelihood estimator of the shape parameter converges in mean square to the true value when the scale parameter is known. The Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The confidence intervals for the parameters are constructed based on asymptotic and Bayesian methods. The Bayes and the maximum likelihood estimators are compared in terms of the estimated risk by the Monte Carlo simulations. The comparison of the estimators based on the record values and the record values with their corresponding inter-record times are performed by using Monte Carlo simulations.  相似文献   

9.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

10.
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.  相似文献   

11.
!n this paper we consider the predicf an problem of the future nth record value based an the first m (m < n) observed record values from one-parameter exponential distribution. We introduce four procedures for obtaining prediction intervals for the nth record value. The performance of the so obtained intervals is assessed through numerical and simulation studies. In these studies, we provide the means and standard errors of lower limits. upper limits and lengths of prediction intervals. Further, we check the validation of these intervals based on some point predictors.  相似文献   

12.
This article mainly considers interval estimation of the scale and shape parameters of the generalized exponential (GE) distribution. We adopt the generalized fiducial method to construct a kind of new confidence intervals for the parameters of interest and compare them with the frequentist and Bayesian methods. In addition, we give the comparison of the point estimation based on the frequentist, generalized fiducial and Bayesian methods. Simulation results show that a new procedure based on generalized fiducial inference is more applicable than the non-fiducial methods for the point and interval estimation of the GE distribution. Finally, two lifetime data sets are used to illustrate the application of our new procedure.  相似文献   

13.
This paper deals with computing shortest width tolerance intervals controlling both tails of the exponential distribution on the basis of record values. Equal-tailed and shortest tolerance factors are derived. The expected widths of these tolerance intervals are evaluated via a Monte Carlo simulation study. Finally, two illustrative examples are also included.  相似文献   

14.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

15.
In this paper, we consider the family of skew generalized t (SGT) distributions originally introduced by Theodossiou [P. Theodossiou, Financial data and the skewed generalized t distribution, Manage. Sci. Part 1 44 (12) ( 1998), pp. 1650–1661] as a skew extension of the generalized t (GT) distribution. The SGT distribution family warrants special attention, because it encompasses distributions having both heavy tails and skewness, and many of the widely used distributions such as Student's t, normal, Hansen's skew t, exponential power, and skew exponential power (SEP) distributions are included as limiting or special cases in the SGT family. We show that the SGT distribution can be obtained as the scale mixture of the SEP and generalized gamma distributions. We investigate several properties of the SGT distribution and consider the maximum likelihood estimation of the location, scale, and skewness parameters under the assumption that the shape parameters are known. We show that if the shape parameters are estimated along with the location, scale, and skewness parameters, the influence function for the maximum likelihood estimators becomes unbounded. We obtain the necessary conditions to ensure the uniqueness of the maximum likelihood estimators for the location, scale, and skewness parameters, with known shape parameters. We provide a simple iterative re-weighting algorithm to compute the maximum likelihood estimates for the location, scale, and skewness parameters and show that this simple algorithm can be identified as an EM-type algorithm. We finally present two applications of the SGT distributions in robust estimation.  相似文献   

16.
In this paper, we introduce an extension of the generalized exponential (GE) distribution, making it more robust against possible influential observations. The new model is defined as the quotient between a GE random variable and a beta-distributed random variable with one unknown parameter. The resulting distribution is a distribution with greater kurtosis than the GE distribution. Probability properties of the distribution such as moments and asymmetry and kurtosis are studied. Likewise, statistical properties are investigated using the method of moments and the maximum likelihood approach. Two real data analyses are reported illustrating better performance of the new model over the GE model.  相似文献   

17.
Vahid Nekoukhou 《Statistics》2017,51(5):1143-1158
In this paper, we develop a bivariate discrete generalized exponential distribution, whose marginals are discrete generalized exponential distribution as proposed by Nekoukhou, Alamatsaz and Bidram [Discrete generalized exponential distribution of a second type. Statistics. 2013;47:876–887]. It is observed that the proposed bivariate distribution is a very flexible distribution and the bivariate geometric distribution can be obtained as a special case of this distribution. The proposed distribution can be seen as a natural discrete analogue of the bivariate generalized exponential distribution proposed by Kundu and Gupta [Bivariate generalized exponential distribution. J Multivariate Anal. 2009;100:581–593]. We study different properties of this distribution and explore its dependence structures. We propose a new EM algorithm to compute the maximum-likelihood estimators of the unknown parameters which can be implemented very efficiently, and discuss some inferential issues also. The analysis of one data set has been performed to show the effectiveness of the proposed model. Finally, we propose some open problems and conclude the paper.  相似文献   

18.
A generalized version of inverted exponential distribution (IED) is introduced in this paper. This lifetime distribution is capable of modelling various shapes of failure rates, and hence various shapes of ageing criteria. The model can be considered as another useful two-parameter generalization of the IED. Statistical and reliability properties of the generalized inverted exponential distribution are derived. Maximum likelihood estimation and least square estimation are used to evaluate the parameters and the reliability of the distribution. Properties of the estimates are also studied.  相似文献   

19.
Generalized exponential, geometric extreme exponential and Weibull distributions are three non-negative skewed distributions that are suitable for analysing lifetime data. We present diagnostic tools based on the likelihood ratio test (LRT) and the minimum Kolmogorov distance (KD) method to discriminate between these models. Probability of correct selection has been calculated for each model and for several combinations of shape parameters and sample sizes using Monte Carlo simulation. Application of LRT and KD discrimination methods to some real data sets has also been studied.  相似文献   

20.
In this paper, we present a formal simple proof for the existence and uniqueness of the maximum likelihood estimates (MLEs) of the parameters of a general class of exponentiated distributions. This class includes the exponentiated (general) exponential, exponentiated Rayleigh (scaled Burr X) and exponentiated Pareto distributions, as special cases, and thus the proof given here establishes the existence and uniqueness of the MLEs for these important special cases as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号