首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors develop a small area estimation method using a nested error linear regression model and survey weights. In particular, they propose a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator to estimate small area means. This estimator borrows strength across areas through the model and makes use of the survey weights to preserve the design consistency as the area sample size increases. The proposed estimator also has a nice self‐benchmarking property. The authors also obtain an approximation to the model mean squared error (MSE) of the proposed estimator and a nearly unbiased estimator of MSE. Finally, they compare the proposed estimator with the EBLUP estimator and the pseudo‐EBLUP estimator proposed by Prasad & Rao (1999), using data analyzed earlier by Battese, Harter & Fuller (1988).  相似文献   

2.
For a general linear mixed normal model, a new linearized weighted jackknife method is proposed to estimate the mean squared prediction error (MSPE) of an empirical best linear unbiased predictor (EBLUP) of a general mixed effect. Different MSPE estimators are compared using a Monte Carlo simulation study.  相似文献   

3.
Unit level linear mixed models are often used in small area estimation (SAE), and the empirical best linear unbiased prediction (EBLUP) is widely used for the estimation of small area means under such models. However, EBLUP requires population level auxiliary data, atleast area specific aggregated values. Sometimes population level auxiliary data is either not available or not consistent with the survey data. We describe a SAE method that uses estimated population auxiliary information. Empirical results show that proposed method for SAE produces an efficient set of small area estimates.  相似文献   

4.
The empirical best linear unbiased predictor (EBLUP) is a linear shrinkage of the direct estimate toward the regression estimate and useful for the small area estimation in the sense of increasing precision of estimation of small area means. However, one potential difficulty of EBLUP is that the overall estimate for a larger geographical area based on a sum of EBLUP is not necessarily identical to the corresponding direct estimate like the overall sample mean. To fix this problem, the paper suggests a new method for benchmarking EBLUP in the Fay–Herriot model without assuming normality of random effects and sampling errors. The resulting benchmarked empirical linear shrinkage (BELS) predictor has novelty in the sense that coefficients for benchmarking are adjusted based on the data from each area. To measure the uncertainty of BELS, the second-order unbiased estimator of the mean squared error is derived.  相似文献   

5.
Using survey weights, You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] proposed a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator of a small area mean under a nested error linear regression model. This estimator borrows strength across areas through a linking model, and makes use of survey weights to ensure design consistency and preserve benchmarking property in the sense that the estimators add up to a reliable direct estimator of the mean of a large area covering the small areas. In this article, a second‐order approximation to the mean squared error (MSE) of the pseudo‐EBLUP estimator of a small area mean is derived. Using this approximation, an estimator of MSE that is nearly unbiased is derived; the MSE estimator of You & Rao [You and Rao, The Canadian Journal of Statistics 2002; 30, 431–439] ignored cross‐product terms in the MSE and hence it is biased. Empirical results on the performance of the proposed MSE estimator are also presented. The Canadian Journal of Statistics 38: 598–608; 2010 © 2010 Statistical Society of Canada  相似文献   

6.
Small area estimation has received considerable attention in recent years because of growing demand for small area statistics. Basic area‐level and unit‐level models have been studied in the literature to obtain empirical best linear unbiased prediction (EBLUP) estimators of small area means. Although this classical method is useful for estimating the small area means efficiently under normality assumptions, it can be highly influenced by the presence of outliers in the data. In this article, the authors investigate the robustness properties of the classical estimators and propose a resistant method for small area estimation, which is useful for downweighting any influential observations in the data when estimating the model parameters. To estimate the mean squared errors of the robust estimators of small area means, a parametric bootstrap method is adopted here, which is applicable to models with block diagonal covariance structures. Simulations are carried out to study the behaviour of the proposed robust estimators in the presence of outliers, and these estimators are also compared to the EBLUP estimators. Performance of the bootstrap mean squared error estimator is also investigated in the simulation study. The proposed robust method is also applied to some real data to estimate crop areas for counties in Iowa, using farm‐interview data on crop areas and LANDSAT satellite data as auxiliary information. The Canadian Journal of Statistics 37: 381–399; 2009 © 2009 Statistical Society of Canada  相似文献   

7.
In this paper, a penalized weighted least squares approach is proposed for small area estimation under the unit level model. The new method not only unifies the traditional empirical best linear unbiased prediction that does not take sampling design into account and the pseudo‐empirical best linear unbiased prediction that incorporates sampling weights but also has the desirable robustness property to model misspecification compared with existing methods. The empirical small area estimator is given, and the corresponding second‐order approximation to mean squared error estimator is derived. Numerical comparisons based on synthetic and real data sets show superior performance of the proposed method to currently available estimators in the literature.  相似文献   

8.
In the small area estimation, the empirical best linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) in the linear mixed model is recognized to be useful because it gives a stable and reliable estimate for a mean of a small area. In practical situations where EBLUP is applied to real data, it is important to evaluate how much EBLUP is reliable. One method for the purpose is to construct a confidence interval based on EBLUP. In this paper, we obtain an asymptotically corrected empirical Bayes confidence interval in a nested error regression model with unbalanced sample sizes and unknown components of variance. The coverage probability is shown to satisfy the confidence level in the second-order asymptotics. It is numerically revealed that the corrected confidence interval is superior to the conventional confidence interval based on the sample mean in terms of the coverage probability and the expected width of the interval. Finally, it is applied to the posted land price data in Tokyo and the neighboring prefecture.  相似文献   

9.
We show that the maximum likelihood estimators (MLEs) of the fixed effects and within‐cluster correlation are consistent in a heteroscedastic nested‐error regression (HNER) model with completely unknown within‐cluster variances under mild conditions. The result implies that the empirical best linear unbiased prediction (EBLUP) method for small area estimation is valid in such a case. We also show that ignoring the heteroscedasticity can lead to inconsistent estimation of the within‐cluster correlation and inferior predictive performance. A jackknife measure of uncertainty for the EBLUP is developed under the HNER model. Simulation studies are carried out to investigate the finite‐sample performance of the EBLUP and MLE under the HNER model, with comparisons to those under the nested‐error regression model in various situations, as well as that of the jackknife measure of uncertainty. The well‐known Iowa crops data is used for illustration. The Canadian Journal of Statistics 40: 588–603; 2012 © 2012 Statistical Society of Canada  相似文献   

10.
Statistical agencies are interested to report precise estimates of linear parameters from small areas. This goal can be achieved by using model-based inference. In this sense, random regression coefficient models provide a flexible way of modelling the relationship between the target and the auxiliary variables. Because of this, empirical best linear unbiased predictor (EBLUP) estimates based on these models are introduced. A closed-formula procedure to estimate the mean-squared error of the EBLUP estimators is also given and empirically studied. Results of several simulation studies are reported as well as an application to the estimation of household normalized net annual incomes in the Spanish Living Conditions Survey.  相似文献   

11.
Unit-level regression models are commonly used in small area estimation (SAE) to obtain an empirical best linear unbiased prediction of small area characteristics. The underlying assumptions of these models, however, may be unrealistic in some applications. Previous work developed a copula-based SAE model where the empirical Kendall's tau was used to estimate the dependence between two units from the same area. In this article, we propose a likelihood framework to estimate the intra-class dependence of the multivariate exchangeable copula for the empirical best unbiased prediction (EBUP) of small area means. One appeal of the proposed approach lies in its accommodation of both parametric and semi-parametric estimation approaches. Under each estimation method, we further propose a bootstrap approach to obtain a nearly unbiased estimator of the mean squared prediction error of the EBUP of small area means. The performance of the proposed methods is evaluated through simulation studies and also by a real data application.  相似文献   

12.
Nested error linear regression models using survey weights have been studied in small area estimation to obtain efficient model‐based and design‐consistent estimators of small area means. The covariates in these nested error linear regression models are not subject to measurement errors. In practical applications, however, there are many situations in which the covariates are subject to measurement errors. In this paper, we develop a nested error linear regression model with an area‐level covariate subject to functional measurement error. In particular, we propose a pseudo‐empirical Bayes (PEB) predictor to estimate small area means. This predictor borrows strength across areas through the model and makes use of the survey weights to preserve the design consistency as the area sample size increases. We also employ a jackknife method to estimate the mean squared prediction error (MSPE) of the PEB predictor. Finally, we report the results of a simulation study on the performance of our PEB predictor and associated jackknife MSPE estimator.  相似文献   

13.
If unit‐level data are available, small area estimation (SAE) is usually based on models formulated at the unit level, but they are ultimately used to produce estimates at the area level and thus involve area‐level inferences. This paper investigates the circumstances under which using an area‐level model may be more effective. Linear mixed models (LMMs) fitted using different levels of data are applied in SAE to calculate synthetic estimators and empirical best linear unbiased predictors (EBLUPs). The performance of area‐level models is compared with unit‐level models when both individual and aggregate data are available. A key factor is whether there are substantial contextual effects. Ignoring these effects in unit‐level working models can cause biased estimates of regression parameters. The contextual effects can be automatically accounted for in the area‐level models. Using synthetic and EBLUP techniques, small area estimates based on different levels of LMMs are investigated in this paper by means of a simulation study.  相似文献   

14.
Abstract.  Previously, small area estimation under a nested error linear regression model was studied with area level covariates subject to measurement error. However, the information on observed covariates was not used in finding the Bayes predictor of a small area mean. In this paper, we first derive the fully efficient Bayes predictor by utilizing all the available data. We then estimate the regression and variance component parameters in the model to get an empirical Bayes (EB) predictor and show that the EB predictor is asymptotically optimal. In addition, we employ the jackknife method to obtain an estimator of mean squared prediction error (MSPE) of the EB predictor. Finally, we report the results of a simulation study on the performance of our EB predictor and associated jackknife MSPE estimators. Our results show that the proposed EB predictor can lead to significant gain in efficiency over the previously proposed EB predictor.  相似文献   

15.
Recently, an empirical best linear unbiased predictor is widely used as a practical approach to small area inference. It is also of interest to construct empirical prediction intervals. However, we do not know which method should be used from among the several existing prediction intervals. In this article, we first obtain an empirical prediction interval by using the residual maximum likelihood method for estimating unknown model variance parameters. Then we compare the later with other intervals with the residual maximum likelihood method. Additionally, some different parametric bootstrap methods for constructing empirical prediction intervals are also compared in a simulation study.  相似文献   

16.
When the samples selected from k normal populations are of unequal sizes, we consider the empirical best linear unbiased predictor, EBLUP, for the mean of each population. For fixed values of the means of these populations, conditions for the Mean Square Error (MSE) of the EBLUP to be smaller than the variance of the sample mean and, at the same time, for its absolute bias to be smaller than a specified fraction of the square root of its MSE are obtained. Preference of the EBLUP over the sample mean is examined for the estimation of the averages of the daily hospital expenses of the Standard Metropolitan Statistical Areas (SMSAs) of twenty states in the US.  相似文献   

17.
Small area estimation plays a prominent role in survey sampling due to a growing demand for reliable small area estimates from both public and private sectors. Popularity of model-based inference is increasing in survey sampling, particularly, in small area estimation. The estimates of the small area parameters can profitably ‘borrow strength’ from data on related multiple characteristics and/or auxiliary variables from other neighboring areas through appropriate models. Fay (1987, Small Area Statistics, Wiley, New York, pp. 91–102) proposed multivariate regression for small area estimation of multiple characteristics. The success of this modeling rests essentially on the strength of correlation of these dependent variables. To estimate small area mean vectors of multiple characteristics, multivariate modeling has been proposed in the literature via a multivariate variance components model. We use this approach to empirical best linear unbiased and empirical Bayes prediction of small area mean vectors. We use data from Battese et al. (1988, J. Amer. Statist. Assoc. 83, 28 –36) to conduct a simulation which shows that the multivariate approach may achieve substantial improvement over the usual univariate approach.  相似文献   

18.
In this paper, we consider estimation of the mean squared prediction error (MSPE) of the best linear predictor of (possibly) nonlinear functions of finitely many future observations in a stationary time series. We develop a resampling methodology for estimating the MSPE when the unknown parameters in the best linear predictor are estimated. Further, we propose a bias corrected MSPE estimator based on the bootstrap and establish its second order accuracy. Finite sample properties of the method are investigated through a simulation study.  相似文献   

19.
The term ‘small area’ or ‘small domain’ is commonly used to denote a small geographical area that has a small subpopulation of people within a large area. Small area estimation is an important area in survey sampling because of the growing demand for better statistical inference for small areas in public or private surveys. In small area estimation problems the focus is on how to borrow strength across areas in order to develop a reliable estimator and which makes use of available auxiliary information. Some traditional methods for small area problems such as empirical best linear unbiased prediction borrow strength through linear models that provide links to related areas, which may not be appropriate for some survey data. In this article, we propose a stepwise Bayes approach which borrows strength through an objective posterior distribution. This approach results in a generalized constrained Dirichlet posterior estimator when auxiliary information is available for small areas. The objective posterior distribution is based only on the assumption of exchangeability across related areas and does not make any explicit model assumptions. The form of our posterior distribution allows us to assign a weight to each member of the sample. These weights can then be used in a straight forward fashion to make inferences about the small area means. Theoretically, the stepwise Bayes character of the posterior allows one to prove the admissibility of the point estimators suggesting that inferential procedures based on this approach will tend to have good frequentist properties. Numerically, we demonstrate in simulations that the proposed stepwise Bayes approach can have substantial strengths compared to traditional methods.  相似文献   

20.
Amparo Baíllo 《Statistics》2013,47(6):553-569
This work deals with estimating the vector of means of certain characteristics of small areas. In this context, a unit level multivariate model with correlated sampling errors is considered. An approximation is obtained for the mean-squared and cross-product errors of the empirical best linear unbiased predictors of the means, when model parameters are estimated either by maximum likelihood (ML) or by restricted ML. This approach has been implemented on a Monte Carlo study using social and labour data from the Spanish Labour Force Survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号