首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion distributions. Improved likelihood ratio tests for these models were developed by Cordeiro (1983 Cordeiro , G. M. (1983). Improved likelihood ratio statistics for generalized linear models. Journal of the Royal Statistical Society, Series B: Methodological 45:404413. [Google Scholar])Cordeiro (1987 Cordeiro , G. M. ( 1987 ). On the corrections to the likelihood ratio statistics . Biometrika 74 : 265274 .[Crossref], [Web of Science ®] [Google Scholar]). We present a simple R program source for calculating Bartlett corrections to improve likelihood ratio tests in these models. The program was tested on some special models, confirming all of the previously reported numerical results for the Bartlett corrections.  相似文献   

3.
In this paper, we derive Bartlett and Bartlett-type corrections [G.M. Cordeiro and S.L.P. Ferrari 1991, A modified score test statistic having chi-squared distribution to order n ?1 , Biometrika 78 (1991), pp. 573–582] to improve the likelihood ratio and Rao's score statistics for testing the mean parameter and the concentration parameter in the von Mises distribution. Simple formulae are suggested for the corrections valid for small and large values of the concentration parameter that do not depend on the modified Bessel functions and can be useful in practical applications.  相似文献   

4.
The paper derives Bartlett corrections for improving the chisquare approximation to the likelihood ratio statistics in a class of location-scale family of distributions, which encompasses the elliptical family of distributions and also asymmetric distributions such as the extreme value distributions. We present, in matrix notation, a Bartlett corrected likelihood ratio statistic for testing that a subset of the nonlinear regression coefficients in this class of models equals a given vector of constants. The formulae derived are simple enough to be used analytically to obtain several Bartlett corrections in a variety of important models. We show that these formulae generalize a number of previously published results. We also present simulation results comparing the sizes and powers of the usual likelihood ratio tests and their Bartlett corrected versions when the scale parameter is considered known and when this parameter is uncorrectly specified.  相似文献   

5.
In this paper we obtain asymptotic expansions, up to order n−1/2 and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes.  相似文献   

6.
ABSTRACT

In this article we derive finite-sample corrections in matrix notation for likelihood ratio and score statistics in extreme-value linear regression models. We consider three corrected score tests that perform better than the usual score test. We also derive general formulae for second-order biases of maximum likelihood estimates of the linear parameters. Some simulations are performed to compare the likelihood ratio and score statistics with their modified versions and to illustrate the bias correction.  相似文献   

7.
In this paper, we obtain an adjusted version of the likelihood ratio (LR) test for errors-in-variables multivariate linear regression models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal distribution as a special case. We derive a modified LR statistic that follows a chi-squared distribution with a high degree of accuracy. Our results generalize those in Melo and Ferrari (Advances in Statistical Analysis, 2010, 94, pp. 75–87) by allowing the parameter of interest to be vector-valued in the multivariate errors-in-variables model. We report a simulation study which shows that the proposed test displays superior finite sample behavior relative to the standard LR test.  相似文献   

8.
ABSTRACT

In this paper, we extend a variance shift model, previously considered in the linear mixed models, to the linear mixed measurement error models using the corrected likelihood of Nakamura (1990 Nakamura, T. (1990). Corrected score function for errors in variables models: methodology and application to generalized linear models. Biometrika 77:127137.[Crossref], [Web of Science ®] [Google Scholar]). This model assumes that a single outlier arises from an observation with inflated variance. We derive the score test and the analogue of the likelihood ratio test, to assess whether the ith observation has inflated variance. A parametric bootstrap procedure is implemented to obtain empirical distributions of the test statistics. Finally, results of a simulation study and an example of real data are presented to illustrate the performance of proposed tests.  相似文献   

9.
The class of symmetric linear regression models has the normal linear regression model as a special case and includes several models that assume that the errors follow a symmetric distribution with longer-than-normal tails. An important member of this class is the t linear regression model, which is commonly used as an alternative to the usual normal regression model when the data contain extreme or outlying observations. In this article, we develop second-order asymptotic theory for score tests in this class of models. We obtain Bartlett-corrected score statistics for testing hypotheses on the regression and the dispersion parameters. The corrected statistics have chi-squared distributions with errors of order O(n ?3/2), n being the sample size. The corrections represent an improvement over the corresponding original Rao's score statistics, which are chi-squared distributed up to errors of order O(n ?1). Simulation results show that the corrected score tests perform much better than their uncorrected counterparts in samples of small or moderate size.  相似文献   

10.
This article deals with testing inference in the class of beta regression models with varying dispersion. We focus on inference in small samples. We perform a numerical analysis in order to evaluate the sizes and powers of different tests. We consider the likelihood ratio test, two adjusted likelihood ratio tests proposed by Ferrari and Pinheiro [Improved likelihood inference in beta regression, J. Stat. Comput. Simul. 81 (2011), pp. 431–443], the score test, the Wald test and bootstrap versions of the likelihood ratio, score and Wald tests. We perform tests on the parameters that index the mean submodel and also on the parameters in the linear predictor of the precision submodel. Overall, the numerical evidence favours the bootstrap tests. It is also shown that the score test is considerably less size-distorted than the likelihood ratio and Wald tests. An application that uses real (not simulated) data is presented and discussed.  相似文献   

11.
This paper investigates the properties of bootstrap and related methods assuming that the underlying distribution is symmetric but otherwise unknown. In particular it studies the percentile-t, nonparametric tilting and empirical likelihood and finds that the performance of percentile-t and non-parametric tilting methods can be improved by incorporating the symmetry into the resampling procedure. However, for symmetric empirical likelihood, the Bartlett correctability no longer holds, although use of bootstrap calibration restores the good coverage properties typically associated with Bartlett correction. This surprising result shows that Bartlett correctability is a very delicate property.  相似文献   

12.
In this paper, we give matrix formulae of order 𝒪(n ?1), where n is the sample size, for the first two moments of Pearson residuals in exponential family nonlinear regression models [G.M. Cordeiro and G.A. Paula, Improved likelihood ratio statistic for exponential family nonlinear models, Biometrika 76 (1989), pp. 93–100.]. The formulae are applicable to many regression models in common use and generalize the results by Cordeiro [G.M. Cordeiro, On Pearson's residuals in generalized linear models, Statist. Prob. Lett. 66 (2004), pp. 213–219.] and Cook and Tsai [R.D. Cook and C.L. Tsai, Residuals in nonlinear regression, Biometrika 72(1985), pp. 23–29.]. We suggest adjusted Pearson residuals for these models having, to this order, the expected value zero and variance one. We show that the adjusted Pearson residuals can be easily computed by weighted linear regressions. Some numerical results from simulations indicate that the adjusted Pearson residuals are better approximated by the standard normal distribution than the Pearson residuals.  相似文献   

13.
This paper provides Bartlett corrections to improve likelihood ratio tests for heteroskedastic normal linear models when the error covariance matrix is nonscaiar and depends on a set of unknown parameters. The Bartlett corrections are simple enough to be used algebraically to obtain several closed-form expressions in special cases. The corrections have also advantages for numerical purposes because they involve only simple operations on matrices and vectors.  相似文献   

14.
We deal with a general class of extreme-value regression models introduced by Barreto-Souza and Vasconcellos [Bias and skewness in a general extreme-value regression model, Comput. Statist. Data Anal. 55 (2011), pp. 1379–1393]. Our goal is to derive an adjusted likelihood ratio statistic that is approximately distributed as χ2 with a high degree of accuracy. Although the adjusted statistic requires more computational effort than its unadjusted counterpart, it is shown that the adjustment term has a simple compact form that can be easily implemented in standard statistical software. Further, we compare the finite-sample performance of the three classical tests (likelihood ratio, Wald, and score), the gradient test that has been recently proposed by Terrell [The gradient statistic, Comput. Sci. Stat. 34 (2002), pp. 206–215], and the adjusted likelihood ratio test obtained in this article. Our simulations favour the latter. Applications of our results are presented.  相似文献   

15.
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1–39.], and (ii) an approximation to the one proposed by Barndorff–Nielsen [Barndorff–Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343–365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33–53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655–661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff–Nielsen's adjustment.  相似文献   

16.
Two-phase regression models with inequality constraints on the regression coefficients and with a small number of measurements is considered. A new test based on the likelihood ratio in linear model with inequality constraints for the presence of a change-point is proposed. Numerical approximations to the powers against various alternatives are given and compared with the powers of the likelihood ratio test in the two-phase regression models without inequality constraints, the backwards CUSUM test, and the k-linear-r-ahead recursive residuals tests. Performance of related likelihood based estimators of the change-point is briefly studied in a Monte Carlo experiment.  相似文献   

17.
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.  相似文献   

18.
The purpose of this paper is to develop diagnostics analysis for nonlinear regression models (NLMs) under scale mixtures of skew-normal (SMSN) distributions introduced by Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124]. This novel class of models provides a useful generalization of the symmetrical NLM [Vanegas LH, Cysneiros FJA. Assessment of diagnostic procedures in symmetrical nonlinear regression models. Comput. Statist. Data Anal. 2010;54:1002–1016] since the random terms distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as the skew-t, skew-slash, skew-contaminated normal distributions, among others. Motivated by the results given in Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124], we presented a score test for testing the homogeneity of the scale parameter and its properties are investigated through Monte Carlo simulations studies. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. The newly developed procedures are illustrated considering a real data set.  相似文献   

19.
The class of inflated beta regression models generalizes that of beta regressions [S.L.P. Ferrari and F. Cribari-Neto, Beta regression for modelling rates and proportions, J. Appl. Stat. 31 (2004), pp. 799–815] by incorporating a discrete component that allows practitioners to model data on rates and proportions with observations that equal an interval limit. For instance, one can model responses that assume values in (0, 1]. The likelihood ratio test tends to be quite oversized (liberal, anticonservative) in inflated beta regressions estimated with a small number of observations. Indeed, our numerical results show that its null rejection rate can be almost twice the nominal level. It is thus important to develop alternative testing strategies. This paper develops small-sample adjustments to the likelihood ratio and signed likelihood ratio test statistics in inflated beta regression models. The adjustments do not require orthogonality between the parameters of interest and the nuisance parameters and are fairly simple since they only require first- and second-order log-likelihood cumulants. Simulation results show that the modified likelihood ratio tests deliver much accurate inference in small samples. An empirical application is presented and discussed.  相似文献   

20.
In this paper we obtain asymptotic expansions up to order n−1/2 for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in exponential family nonlinear models (Cordeiro and Paula, 1989), under a sequence of Pitman alternatives. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the dispersion parameter, thus generalising the results given in Cordeiro et al. (1994) and Ferrari et al. (1997). We also present Monte Carlo simulations in order to compare the finite-sample performance of these tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号