首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In extending univariate outlier detection methods to higher dimension, various issues arise: limited visualization methods, inadequacy of marginal methods, lack of a natural order, limited parametric modeling, and, when using Mahalanobis distance, restriction to ellipsoidal contours. To address and overcome such limitations, we introduce nonparametric multivariate outlier identifiers based on multivariate depth functions, which can generate contours following the shape of the data set. Also, we study masking robustness, that is, robustness against misidentification of outliers as nonoutliers. In particular, we define a masking breakdown point (MBP), adapting to our setting certain ideas of Davies and Gather [1993. The identification of multiple outliers (with discussion). Journal of the American Statistical Association 88, 782–801] and Becker and Gather [1999. The masking breakdown point of multivariate outlier identification rules. Journal of the American Statistical Association 94, 947–955] based on the Mahalanobis distance outlyingness. We then compare four affine invariant outlier detection procedures, based on Mahalanobis distance, halfspace or Tukey depth, projection depth, and “Mahalanobis spatial” depth. For the goal of threshold type outlier detection, it is found that the Mahalanobis distance and projection procedures are distinctly superior in performance, each with very high MBP, while the halfspace approach is quite inferior. When a moderate MBP suffices, the Mahalanobis spatial procedure is competitive in view of its contours not constrained to be elliptical and its computational burden relatively mild. A small sampling experiment yields findings completely in accordance with the theoretical comparisons. While these four depth procedures are relatively comparable for the purpose of robust affine equivariant location estimation, the halfspace depth is not competitive with the others for the quite different goal of robust setting of an outlyingness threshold.  相似文献   

2.
A general way of detecting multivariate outliers involves using robust depth functions, or, equivalently, the corresponding ‘outlyingness’ functions; the more outlying an observation, the more extreme (less deep) it is in the data cloud and thus potentially an outlier. Most outlier detection studies in the literature assume that the underlying distribution is multivariate normal. This paper deals with the case of multivariate skewed data, specifically when the data follow the multivariate skew-normal [1] distribution. We compare the outlier detection capabilities of four robust outlier detection methods through their outlyingness functions in a simulation study. Two scenarios are considered for the occurrence of outliers: ‘the cluster’ and ‘the radial’. Conclusions and recommendations are offered for each scenario.  相似文献   

3.
A note on the Cook''s distance   总被引:1,自引:0,他引:1  
A modification of the classical Cook's distance is proposed, providing us with a generalized Mahalanobis distance in the context of multivariate elliptical linear regression models. We establish the exact distribution of a pivotal type statistics based on this generalized Mahalanobis distance, which provides critical points for the identification of outlier data points. Based on the equivalence between the modified Cook's distance and what is called the mean-shift multivariate outlier elliptical model, twelve new modifications are proposed for the Cook's distance. We also describe the explicit relationship between the Cook's distance and the likelihood displacement with the modified Cook's distance. We illustrate the procedure with some examples, in the context of multiple and multivariate linear regression.  相似文献   

4.
The influence function introduced by Hampe1 (1968, 1973, 1974) is a tool that can be used for outlier detection. Campbell (1978) has obtained influence function for Mahalanobis’s distance between two populations which can be used for detecting outliers in discrim-inant analysis. In this paper influence functions for a variety of parametric functions in multivariate analysis are obtained. Influence functions for the generalized variance, the matrix of regression coefficients, the noncentrality matrix Σ-1 δ in multivariate analysis of variance and its eigen values, the matrix L, which is a generalization of 1-R2 , canonical correlations, principal components and parameters that correspond to Pillai’s statistic (1955), Hotelling’s (1951) generalized To2 and Wilk’s Λ (1932), which can be used for outlier detection in multivariate analysis, are obtained. Delvin, Ginanadesikan and Kettenring (1975) have obtained influence function for the population correlation co-efficient in the bivariate case. It is shown in this paper that influence functions for parameters corresponding to r2, R2, and Mahalanobis D2 can be obtained as particular cases.  相似文献   

5.
The process of detection of outliers is an interesting and important aspect in the analysis of data, as it could impact the inference. There are various methods available in the literature for detection of outliers in multivariate data [V. Barnett and T. Lewis, Outliers in Statistical Data, John Wiley & Sons, Chichester, 1994] using the Mahalanobis distance measure. An attempt is made to propose an alternate method of outlier detection based on the comedian introduced by Falk [On MAD and Comedians, Ann. Inst. Statist. Math. 49 (1997), pp. 615–644]. The proposed method is computationally efficient with high breakdown value and low computation time. Further, important properties, namely, success rates (SR) and false detection rates (FDR) are studied and compared with some of the well-known outlier detection methods through a simulation study. The Comedian method has high SR and low FDR for all combination of parameters. On removal of the detected outliers or down weighing, the same, highly robust and approximately affine equivariant estimators of multivariate location and scatter can be obtained. Finally, the method is applied to well-known real data sets to evaluate its performance.  相似文献   

6.
We examined the impact of different methods for replacing missing data in discriminant analyses conducted on randomly generated samples from multivariate normal and non-normal distributions. The probabilities of correct classification were obtained for these discriminant analyses before and after randomly deleting data as well as after deleted data were replaced using: (1) variable means, (2) principal component projections, and (3) the EM algorithm. Populations compared were: (1) multivariate normal with covariance matrices ∑1=∑2, (2) multivariate normal with ∑1≠∑2 and (3) multivariate non-normal with ∑1=∑2. Differences in the probabilities of correct classification were most evident for populations with small Mahalanobis distances or high proportions of missing data. The three replacement methods performed similarly but all were better than non - replacement.  相似文献   

7.
Mahalanobis square distances (MSDs) based on robust estimators improves outlier detection performance in multivariate data. However, the unbiasedness of robust estimators are not guaranteed when the sample size is small and this reduces their performance in outlier detection. In this study, we propose a framework that uses MSDs with incorporated small sample correction factor (c) and show its impact on performance when the sample size is small. This is achieved by using two prototypes, minimum covariance determinant estimator and S-estimators with bi-weight and t-biweight functions. The results from simulations show that distribution of MSDs for non-extreme observations are more likely to fit to chi-square with p degrees of freedom and MSDs of the extreme observations fit to F distribution, when c is incorporated into the model. However, without c, the distributions deviate significantly from chi-square and F observed for the case with incorporated c. These results are even more prominent for S-estimators. We present seven distinct comparison methods with robust estimators and various cut-off values and test their outlier detection performance with simulated data. We also present an application of some of these methods to the real data.  相似文献   

8.
Summary.  As a part of the EUREDIT project new methods to detect multivariate outliers in incomplete survey data have been developed. These methods are the first to work with sampling weights and to be able to cope with missing values. Two of these methods are presented here. The epidemic algorithm simulates the propagation of a disease through a population and uses extreme infection times to find outlying observations. Transformed rank correlations are robust estimates of the centre and the scatter of the data. They use a geometric transformation that is based on the rank correlation matrix. The estimates are used to define a Mahalanobis distance that reveals outliers. The two methods are applied to a small data set and to one of the evaluation data sets of the EUREDIT project.  相似文献   

9.
In this paper, sequential procedures for the surveillance of the covariance matrices of multivariate nonlinear time series are introduced. Two different types of control charts are proposed. The first type is based on the exponential smoothing of each component of a local measure for the covariances. The control statistic is equal to the Mahalanobis distance of this quantity with its in-control mean. In our second approach, the Mahalanobis distance is first determined and after that it is exponentially smoothed. We discuss three examples of local measures.

Several properties of the proposed schemes are discussed assuming the target process to be generated by a multivariate GARCH(1, 1) model. The generalization to the family of spherical distributions allows the modelling of frequently observed fat tails in financial data. Some results of an extensive Monte Carlo simulation study are provided in order to judge the performance of the presented control schemes. As a performance measure we use the average run length. An empirical example illustrates the importance of the fast detection of the changes in the covariance structure of the returns of financial assets.  相似文献   

10.
When modeling multilevel data, it is important to accurately represent the interdependence of observations within clusters. Ignoring data clustering may result in parameter misestimation. However, it is not well established to what degree parameter estimates are affected by model misspecification when applying missing data techniques (MDTs) to incomplete multilevel data. We compare the performance of three MDTs with incomplete hierarchical data. We consider the impact of imputation model misspecification on the quality of parameter estimates by employing multiple imputation under assumptions of a normal model (MI/NM) with two-level cross-sectional data when values are missing at random on the dependent variable at rates of 10%, 30%, and 50%. Five criteria are used to compare estimates from MI/NM to estimates from MI assuming a linear mixed model (MI/LMM) and maximum likelihood estimation to the same incomplete data sets. With 10% missing data (MD), techniques performed similarly for fixed-effects estimates, but variance components were biased with MI/NM. Effects of model misspecification worsened at higher rates of MD, with the hierarchical structure of the data markedly underrepresented by biased variance component estimates. MI/LMM and maximum likelihood provided generally accurate and unbiased parameter estimates but performance was negatively affected by increased rates of MD.  相似文献   

11.
The stalactite plot for the detection of multivariate outliers   总被引:1,自引:0,他引:1  
Detection of multiple outliers in multivariate data using Mahalanobis distances requires robust estimates of the means and covariance of the data. We obtain this by sequential construction of an outlier free subset of the data, starting from a small random subset. The stalactite plot provides a cogent summary of suspected outliers as the subset size increases. The dependence on subset size can be virtually removed by a simulation-based normalization. Combined with probability plots and resampling procedures, the stalactite plot, particularly in its normalized form, leads to identification of multivariate outliers, even in the presence of appreciable masking.  相似文献   

12.
Data on the weights and heights of children 2-18 yeas old in Iran were obtained in a National Health Survey of 10 660 families in 1990-92. Data were 'cleaned' in 1 year age groups. After excluding gross outliers by inspection of bivariate scatter plots, Box-Cox power transformations were used to normalize the distributions of height and weight. If a multivariate Box-Cox power transformation to normality exists, then it is equivalent to normalizing the data variable by variable. After excluding gross outliers, exclusions based on the Mahalanobis distance were almost identical to those identified by Hadi's iterative procedure, because the percentages of outliers were small. In all, 1% of the observations were gross outliers and a further 0.4% were identified by multivariate analysis. Review of records showed that the outliers identified by multivariate analysis resulted from data-processing errors. After transformation and 'cleaning', the data quality was excellent and suitable for the construction of growth charts.  相似文献   

13.
In this article, we compare alternative missing imputation methods in the presence of ordinal data, in the framework of CUB (Combination of Uniform and (shifted) Binomial random variable) models. Various imputation methods are considered, as are univariate and multivariate approaches. The first step consists of running a simulation study designed by varying the parameters of the CUB model, to consider and compare CUB models as well as other methods of missing imputation. We use real datasets on which to base the comparison between our approach and some general methods of missing imputation for various missing data mechanisms.  相似文献   

14.
On Maximum Depth and Related Classifiers   总被引:1,自引:0,他引:1  
Abstract.  Over the last couple of decades, data depth has emerged as a powerful exploratory and inferential tool for multivariate data analysis with wide-spread applications. This paper investigates the possible use of different notions of data depth in non-parametric discriminant analysis. First, we consider the situation where the prior probabilities of the competing populations are all equal and investigate classifiers that assign an observation to the population with respect to which it has the maximum location depth. We propose a different depth-based classification technique for unequal prior problems, which is also useful for equal prior cases, especially when the populations have different scatters and shapes. We use some simulated data sets as well as some benchmark real examples to evaluate the performance of these depth-based classifiers. Large sample behaviour of the misclassification rates of these depth-based non-parametric classifiers have been derived under appropriate regularity conditions.  相似文献   

15.
An outlier is defined as an observation that is significantly different from the others in its dataset. In high-dimensional regression analysis, datasets often contain a portion of outliers. It is important to identify and eliminate the outliers for fitting a model to a dataset. In this paper, a novel outlier detection method is proposed for high-dimensional regression problems. The leave-one-out idea is utilized to construct a novel outlier detection measure based on distance correlation, and then an outlier detection procedure is proposed. The proposed method enjoys several advantages. First, the outlier detection measure can be simply calculated, and the detection procedure works efficiently even for high-dimensional regression data. Moreover, it can deal with a general regression, which does not require specification of a linear regression model. Finally, simulation studies show that the proposed method behaves well for detecting outliers in high-dimensional regression model and performs better than some other competing methods.  相似文献   

16.
I consider the problem of estimating the Mahalanobis distance between multivariate normal populations when the population covariance matrix satisfies a graphical model. In addition to providing a clear understanding of the dependencies in a multivariate data set, the use of graphical models can reduce the variability of the estimated distances and improve inferences. I derive the asymptotic distribution of the estimated Mahalanobis distance under a general covariance model, which includes graphical models as a special case. Two examples are discussed.  相似文献   

17.
This paper treats the problem of estimating the Mahalanobis distance for the purpose of detecting outliers in high-dimensional data. Three ridge-type estimators are proposed and risk functions for deciding an appropriate value of the ridge coefficient are developed. It is argued that one of the ridge estimator has particularly tractable properties, which is demonstrated through outlier analysis of real and simulated data.  相似文献   

18.
Inequality-restricted hypotheses testing methods containing multivariate one-sided testing methods are useful in practice, especially in multiple comparison problems. In practice, multivariate and longitudinal data often contain missing values since it may be difficult to observe all values for each variable. However, although missing values are common for multivariate data, statistical methods for multivariate one-sided tests with missing values are quite limited. In this article, motivated by a dataset in a recent collaborative project, we develop two likelihood-based methods for multivariate one-sided tests with missing values, where the missing data patterns can be arbitrary and the missing data mechanisms may be non-ignorable. Although non-ignorable missing data are not testable based on observed data, statistical methods addressing this issue can be used for sensitivity analysis and might lead to more reliable results, since ignoring informative missingness may lead to biased analysis. We analyse the real dataset in details under various possible missing data mechanisms and report interesting findings which are previously unavailable. We also derive some asymptotic results and evaluate our new tests using simulations.  相似文献   

19.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

20.
We propose a new approach for outlier detection, based on a ranking measure that focuses on the question of whether a point is ‘central’ for its nearest neighbours. Using our notations, a low cumulative rank implies that the point is central. For instance, a point centrally located in a cluster has a relatively low cumulative sum of ranks because it is among the nearest neighbours of its own nearest neighbours, but a point at the periphery of a cluster has a high cumulative sum of ranks because its nearest neighbours are closer to each other than the point. Use of ranks eliminates the problem of density calculation in the neighbourhood of the point and this improves the performance. Our method performs better than several density-based methods on some synthetic data sets as well as on some real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号