首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates estimation of parameters in a combination of the multivariate linear model and growth curve model, called a generalized GMANOVA model. Making analogy between the outer product of data vectors and covariance yields an approach to directly do least squares to covariance. An outer product least squares estimator of covariance (COPLS estimator) is obtained and its distribution is presented if a normal assumption is imposed on the error matrix. Based on the COPLS estimator, two-stage generalized least squares estimators of the regression coefficients are derived. In addition, asymptotic normalities of these estimators are investigated. Simulation studies have shown that the COPLS estimator and two-stage GLS estimators are alternative competitors with more efficiency in the sense of sample mean, standard deviations and mean of the variance estimates to the existing ML estimator in finite samples. An example of application is also illustrated.  相似文献   

2.
The Maximum Likelihood (ML) and Best Linear Unbiased (BLU) estimators of the location and scale parameters of an extreme value distribution (Lawless [1982]) are compared under conditions of small sample sizes and Type I censorship. The comparisons were made in terms of the mean square error criterion. According to this criterion, the ML estimator of σ in the case of very small sample sizes (n < 10) and heavy censorship (low censoring time) proved to be more efficient than the corresponding BLU estimator. However, the BLU estimator for σ attains parity with the corresponding ML estimator when the censoring time increases even for sample sizes as low as 10. The BLU estimator of σ attains equivalence with the ML estimator when the sample size increases above 10, particularly when the censoring time is also increased. The situation is reversed when it came to estimating the location parameter μ, as the BLU estimator was found to be consistently more efficient than the ML estimator despite the improved performance of the ML estimator when the sample size increases. However, computational ease and convenience favor the ML estimators.  相似文献   

3.
We investigate the asymptotic behaviour of binned kernel density estimators for dependent and locally non-stationary random fields converging to stationary random fields. We focus on the study of the bias and the asymptotic normality of the estimators. A simulation experiment conducted shows that both the kernel density estimator and the binned kernel density estimator have the same behavior and both estimate accurately the true density when the number of fields increases. We apply our results to the 2002 incidence rates of tuberculosis in the departments of France.  相似文献   

4.
The maximum likelihood (ML) method is used to estimate the unknown Gamma regression (GR) coefficients. In the presence of multicollinearity, the variance of the ML method becomes overstated and the inference based on the ML method may not be trustworthy. To combat multicollinearity, the Liu estimator has been used. In this estimator, estimation of the Liu parameter d is an important problem. A few estimation methods are available in the literature for estimating such a parameter. This study has considered some of these methods and also proposed some new methods for estimation of the d. The Monte Carlo simulation study has been conducted to assess the performance of the proposed methods where the mean squared error (MSE) is considered as a performance criterion. Based on the Monte Carlo simulation and application results, it is shown that the Liu estimator is always superior to the ML and recommendation about which best Liu parameter should be used in the Liu estimator for the GR model is given.  相似文献   

5.
This paper is concerned with classical statistical estimation of the reliability function for the exponential density with unknown mean failure time θ, and with a known and fixed mission time τ. The minimum variance unbiased (MVU) estimator and the maximum likelihood (ML) estimator are reviewed and their mean square errors compared for different sample sizes. These comparisons serve also to extend previous work, and reinforce further the nonexistence of a uniformly best estimator. A class of shrunken estimators is then defined, and it produces a shrunken quasi-estimator and a shrunken estimator. The mean square errors for both these estimators are compared to the mean square errors of the MVU and ML estimators, and the new estimators are found to perform very well. Unfortunately, these estimators are difficult to compute for practical applications. A second class of estimators, which is easy to compute is also developed. Its mean square error properties are compared to the other estimators, and it outperforms all the contending estimators over the high and low reliability parameter space. Since, for all the estimators, analytical mean square error comparisons are not tractable, extensive numerical analyses are done in obtaining both the exact small sample and large sample results.  相似文献   

6.
Sousa et al. and Gupta et al. suggested ratio and regression-type estimators of the mean of a sensitive variable using nonsensitive auxiliary variable. This article proposes exponential-type estimators using one and two auxiliary variables to improve the efficiency of mean estimator based on a randomized response technique. The expressions for the mean squared errors (MSEs) and bias, up to first-order approximation, have been obtained. It is shown that the proposed exponential-type estimators are more efficient than the existing estimators. The gain in efficiency over the existing estimators has also been shown with a simulation study and by using real data.  相似文献   

7.
The exponentiated Gumbel model has been shown to be useful in climate modeling including global warming problem, flood frequency analysis, offshore modeling, rainfall modeling, and wind speed modeling. Here, we consider estimation of the probability density function (PDF) and the cumulative distribution function (CDF) of the exponentiated Gumbel distribution. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least-square (LS) estimator, and weighted least-square (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others.  相似文献   

8.
The seemingly unrelated regression model is viewed in the context of repeated measures analysis. Regression parameters and the variance-covariance matrix of the seemingly unrelated regression model can be estimated by using two-stage Aitken estimation. The first stage is to obtain a consistent estimator of the variance-covariance matrix. The second stage uses this matrix to obtain the generalized least squares estimators of the regression parameters. The maximum likelihood (ML) estimators of the regression parameters can be obtained by performing the two-stage estimation iteratively. The iterative two-stage estimation procedure is shown to be equivalent to the EM algorithm (Dempster, Laird, and Rubin, 1977) proposed by Jennrich and Schluchter (1986) and Laird, Lange, and Stram (1987) for repeated measures data. The equivalence of the iterative two-stage estimator and the ML estimator has been previously demonstrated empirically in a Monte Carlo study by Kmenta and Gilbert (1968). It does not appear to be widely known that the two estimators are equivalent theoretically. This paper demonstrates this equivalence.  相似文献   

9.
Negative binomial regression (NBR) and Poisson regression (PR) applications have become very popular in the analysis of count data in recent years. However, if there is a high degree of relationship between the independent variables, the problem of multicollinearity arises in these models. We introduce new two-parameter estimators (TPEs) for the NBR and the PR models by unifying the two-parameter estimator (TPE) of Özkale and Kaç?ranlar [The restricted and unrestricted two-parameter estimators. Commun Stat Theory Methods. 2007;36:2707–2725]. These new estimators are general estimators which include maximum likelihood (ML) estimator, ridge estimator (RE), Liu estimator (LE) and contraction estimator (CE) as special cases. Furthermore, biasing parameters of these estimators are given and a Monte Carlo simulation is done to evaluate the performance of these estimators using mean square error (MSE) criterion. The benefits of the new TPEs are also illustrated in an empirical application. The results show that the new proposed TPEs for the NBR and the PR models are better than the ML estimator, the RE and the LE.  相似文献   

10.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

11.
The semiparametric estimators of time varying long memory parameter are investigated for locally stationary long memory processes. The GPH estimator and the local Whittle estimator are considered. Under some mild regularity assumptions, the weak consistency and the asymptotic normality of the estimators are obtained. The finite sample performance of the estimators is discussed through a small simulation study.  相似文献   

12.
This paper gives necessary and sufficient conditions for a mixed regression estimator to be superior to another mixed estimator. The comparisons are based on the mean square error matrices of the estimators. Both estimators are allowed to be biased.  相似文献   

13.
Analysis of data in the form of a set of points irregularly distributed within a region of space usually involves the study of some property of the distribution of inter-event distances. One such function is G, the distribution of the distance from an event to its nearest neighbor. In practice, point processes are commonly observed through a bounded window, thus making edge effects an important component in the estimation of G. Several estimators have been proposed, all dealing with the edge effect problem in different ways. This paper proposes a new alternative for estimating the nearest neighbor distribution and compares it to other estimators. The result is an estimator with relatively small mean squared error for a wide variety of stationary processes.  相似文献   

14.
This paper deals with improved estimation of a gamma shape parameter from a decision-theoretic point of view. First we study the second-order properties of three estimators – (i) the maximum-likelihood estimator (MLE), (ii) a bias corrected version of the MLE, and (iii) an improved version (in terms of mean squared error) of the MLE. It is shown that all the three estimators mentioned above are second-order inadmissible. Next, we obtain superior estimators which are second order better than the above three estimators. Simulation results are provided to study the relative risk improvement of each improved estimator over the MLE.  相似文献   

15.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

16.
A regression type estimator of the parameter d in fractionally differenced ARMA (p,q) processes is presented. The proposed estimator is shown to be mean square consistent. Its performance is compared with some of the existing estimators via a simulation study.  相似文献   

17.
Poisson regression is a very commonly used technique for modeling the count data in applied sciences, in which the model parameters are usually estimated by the maximum likelihood method. However, the presence of multicollinearity inflates the variance of maximum likelihood (ML) estimator and the estimated parameters give unstable results. In this article, a new linearized ridge Poisson estimator is introduced to deal with the problem of multicollinearity. Based on the asymptotic properties of ML estimator, the bias, covariance and mean squared error of the proposed estimator are obtained and the optimal choice of shrinkage parameter is derived. The performance of the existing estimators and proposed estimator is evaluated through Monte Carlo simulations and two real data applications. The results clearly reveal that the proposed estimator outperforms the existing estimators in the mean squared error sense.KEYWORDS: Poisson regression, multicollinearity, ridge Poisson estimator, linearized ridge regression estimator, mean squared errorMathematics Subject Classifications: 62J07, 62F10  相似文献   

18.
Abstract. In this paper, two non‐parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel‐based approaches. The second estimator involves sequential fitting by univariate local polynomial quantile regressions for each additive component with the other additive components replaced by the corresponding estimates from the first estimator. The purpose of the extra local averaging is to reduce the variance of the first estimator. We show that the second estimator achieves oracle efficiency in the sense that each estimated additive component has the same variance as in the case when all other additive components were known. Asymptotic properties are derived for both estimators under dependent processes that are strictly stationary and absolutely regular. We also provide a demonstrative empirical application of additive quantile models to ambulance travel times.  相似文献   

19.
In the case where the population distribution is unknown, the Kaplan–Meier estimator of the reliability function based on a ranked set sample with random right-censored data is first proposed. It is shown to be a unique self-consistent estimator. Then, the censored RSS estimator of the population mean is constructed. A simulation study is conducted to compare the performance of the proposed estimators with the corresponding estimators based on a simple random sample. It is shown that the ranked set sampling has higher efficiency. Finally, the proposed method is applied to a renal carcinoma study.  相似文献   

20.
Abstract

This article concerns the stochastically constrained linear model under a biased assumption. We propose a quasi-stochastically constrained least squares estimator. Furthermore, we provide the expectation of this estimator, demonstrate its consistency and asymptotic normality. In the end of the article, the simulation study of the new estimator shows that it is superior to the least squares estimator, ridge estimator, and the linear constrained estimators under certain conditions by comparing the mean squared errors of these estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号