首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assessing exposures to hazards in order to characterize risk is at the core of occupational hygiene. Our study examined dropped ceiling systems commonly used in schools and commercial buildings and lay‐in ceiling panels that may have contained asbestos prior to the mid to late 1970s. However, most ceiling panels and tiles do not contain asbestos. Since asbestos risk relates to dose, we estimated the distribution of eight‐hour TWA concentrations and one‐year exposures (a one‐year dose equivalent) to asbestos fibers (asbestos f/cc‐years) for five groups of workers who may encounter dropped ceilings: specialists, generalists, maintenance workers, nonprofessional do‐it‐yourself (DIY) persons, and other tradespersons who are bystanders to ceiling work. Concentration data (asbestos f/cc) were obtained through two exposure assessment studies in the field and one chamber study. Bayesian and stochastic models were applied to estimate distributions of eight‐hour TWAs and annual exposures (dose). The eight‐hour TWAs for all work categories were below current and historic occupational exposure limits (OELs). Exposures to asbestos fibers from dropped ceiling work would be categorized as “highly controlled” for maintenance workers and “well controlled” for remaining work categories, according to the American Industrial Hygiene Association exposure control rating system. Annual exposures (dose) were found to be greatest for specialists, followed by maintenance workers, generalists, bystanders, and DIY. On a comparative basis, modeled dose and thus risk from dropped ceilings for all work categories were orders of magnitude lower than published exposures for other sources of banned friable asbestos‐containing building material commonly encountered in construction trades.  相似文献   

2.
S. E. Holm 《Risk analysis》2013,33(1):161-176
The potential for fiber exposure during historical use of chrysotile‐containing joint compounds (JCC) has been documented, but the published data are of limited use for reconstructing exposures and assessing worker risk. Consequently, fiber concentration distributions for workers sanding JCC were independently derived by applying a recently developed model based on published dust measurements from sanding modern‐day (asbestos‐free) joint compound and compared to fiber concentration distributions based on limited historical measurements. This new procedure relies on factors that account for (i) differences in emission rates between modern‐day and JCC and (ii) the number of fibers (quantified by phase contrast microscopy [PCM]) per mass of dust generated by sanding JCC, as determined in a bench‐scale chamber study using a recreated JCC, that convert respirable dust concentrations to fiber concentrations. Airborne respirable PCM‐fiber concentration medians (and 95% confidence intervals) derived for output variables using the new procedure were 0.26 (0.039, 1.7) f/cm3 and 0.078 (0.013, 0.47) f/cm3, and corresponding total fiber concentrations were 1.2 (0.17, 9.2) f/cm3 and 0.37 (0.056, 2.5) f/cm3, in enclosed and nonenclosed environments, respectively. Corresponding estimates of respirable and total PCM fiber concentrations measured historically during sanding of asbestos‐containing joint compound—adjusted for differences between peak and time‐weighted average (TWA) concentrations and documented analytical preparation and sampling artifacts—were 0.15 (0.019, 0.95) f/cm3 and 0.86 (0.11, 5.4) f/cm3, respectively. The PCM‐fiber concentration distributions estimated using the new procedure bound the distribution estimated from adjusted TWA historical fiber measurements, suggesting reasonable consistency of these estimates taking into account uncertainties addressed in this study.  相似文献   

3.
Our reconstructed historical work scenarios incorporating a vintage 1950s locomotive can assist in better understanding the historical asbestos exposures associated with past maintenance and repairs and fill a literature data gap. Air sampling data collected during the exposure scenarios and analyzed by NIOSH 7400 (PCM) and 7402 (PCME) methodologies show personal breathing zone asbestiform fiber exposures were below the current OSHA exposure limits for the eight‐hour TWA permissible exposure limit (PEL) of 0.1 f/cc (range <0.007–0.064 PCME f/cc) and the 30‐minute short‐term excursion limit (EL) of 1.0 f/cc (range <0.045–0.32 PCME f/cc) and orders of magnitude below historic OSHA PEL and ACGIH TLVs. Bayesian decision analysis (BDA) results demonstrate that the 95th percentile point estimate falls into an AIHA exposure category 3 or 4 as compared to the current PEL and category 1 when compared to the historic PEL. BDA results demonstrate that bystander exposures would be classified as category 0. Our findings were also significantly below the published calcium magnesium insulations exposure range of 2.5 to 7.5 f/cc reported for historic work activities of pipefitters, mechanics, and boilermakers. Diesel‐electric locomotive pipe systems were typically insulated with a woven tape lagging that may have been chrysotile asbestos and handled, removed, and reinstalled during repair and maintenance activities. We reconstructed historical work scenarios containing asbestos woven tape pipe lagging that have not been characterized in the published literature. The historical work scenarios were conducted by a retired railroad pipefitter with 37 years of experience working with materials and locomotives.  相似文献   

4.
The potential for para‐occupational (or take‐home) exposures from contaminated clothing has been recognized for the past 60 years. To better characterize the take‐home asbestos exposure pathway, a study was performed to measure the relationship between airborne chrysotile concentrations in the workplace, the contamination of work clothing, and take‐home exposures and risks. The study included air sampling during two activities: (1) contamination of work clothing by airborne chrysotile (i.e., loading the clothing), and (2) handling and shaking out of the clothes. The clothes were contaminated at three different target airborne chrysotile concentrations (0–0.1 fibers per cubic centimeter [f/cc], 1–2 f/cc, and 2–4 f/cc; two events each for 31–43 minutes; six events total). Arithmetic mean concentrations for the three target loading levels were 0.01 f/cc, 1.65 f/cc, and 2.84 f/cc (National Institute of Occupational Health and Safety [NIOSH] 7402). Following the loading events, six matched 30‐minute clothes‐handling and shake‐out events were conducted, each including 15 minutes of active handling (15‐minute means; 0.014–0.097 f/cc) and 15 additional minutes of no handling (30‐minute means; 0.006–0.063 f/cc). Percentages of personal clothes‐handling TWAs relative to clothes‐loading TWAs were calculated for event pairs to characterize exposure potential during daily versus weekly clothes‐handling activity. Airborne concentrations for the clothes handler were 0.2–1.4% (eight‐hour TWA or daily ratio) and 0.03–0.27% (40‐hour TWA or weekly ratio) of loading TWAs. Cumulative chrysotile doses for clothes handling at airborne concentrations tested were estimated to be consistent with lifetime cumulative chrysotile doses associated with ambient air exposure (range for take‐home or ambient doses: 0.00044–0.105 f/cc year).  相似文献   

5.
Over time, concerns have been raised regarding the potential for human exposure and risk from asbestos in cosmetic‐talc–containing consumer products. In 1985, the U.S. Food and Drug Administration (FDA) conducted a risk assessment evaluating the potential inhalation asbestos exposure associated with the cosmetic talc consumer use scenario of powdering an infant during diapering, and found that risks were below levels associated with background asbestos exposures and risk. However, given the scope and age of the FDA's assessment, it was unknown whether the agency's conclusions remained relevant to current risk assessment practices, talc application scenarios, and exposure data. This analysis updates the previous FDA assessment by incorporating the current published exposure literature associated with consumer use of talcum powder and using the current U.S. Environmental Protection Agency's (EPA) nonoccupational asbestos risk assessment approach to estimate potential cumulative asbestos exposure and risk for four use scenarios: (1) infant exposure during diapering; (2) adult exposure from infant diapering; (3) adult exposure from face powdering; and (4) adult exposure from body powdering. The estimated range of cumulative asbestos exposure potential for all scenarios (assuming an asbestos content of 0.1%) ranged from 0.0000021 to 0.0096 f/cc‐yr and resulted in risk estimates that were within or below EPA's acceptable target risk levels. Consistent with the original FDA findings, exposure and corresponding health risk in this range were orders of magnitude below upper‐bound estimates of cumulative asbestos exposure and risk at ambient levels, which have not been associated with increased incidence of asbestos‐related disease.  相似文献   

6.
The U.S. Environmental Protection Agency has begun discussions to consider its assessment of asbestos toxicity related to mineral form and fiber size. Brake workers are typically exposed to short chrysotile fibers. To explore the mesothelioma risk among brake workers, considering other occupational exposures to asbestos, data from a study that was published previously were obtained and the analysis was extended. The National Cancer Institute provided data from a case-control study of mesothelioma. Because many participants with a history of brake work also had employment in other asbestos-related occupations, mesothelioma cases and controls were compared for a history of brake work, controlling for employment in eight occupations with potential asbestos exposure. A stratified analysis was also performed excluding those with any of the eight occupations. Possible interactions between brake work and other occupational exposures related to risk of mesothelioma were also examined. The odds ratio (OR) for employment in brake installation or repair was 0.71 (95% CI: 0.30-1.60) when controlled for insulation or shipbuilding. When a history of employment in any of the eight occupations with potential asbestos exposure was controlled, the OR was 0.82 (95% CI: 0.36-1.80). ORs did not increase with increasing duration of brake work. Exclusion of those with any of the eight exposures resulted in an OR of 0.62 (95% CI: 0.01-4.71) for occupational brake work. There was no evidence of an interaction between brake work and other occupational exposures. These latter analyses were based on small numbers of exposed cases. The results are consistent with the existing literature indicating that brake work does not increase the risk of mesothelioma and adds to the evidence that fiber type and size are important determinants of mesothelioma risk.  相似文献   

7.
This study's objective is to assess the risk of asbestos‐related disease being contracted by past users of cosmetic talcum powder.  To our knowledge, no risk assessment studies using exposure data from historical exposures or chamber simulations have been published. We conducted activity‐based sampling with cosmetic talcum powder samples from five opened and previously used containers that are believed to have been first manufactured and sold in the 1960s and 1970s.  These samples had been subject to conflicting claims of asbestos content; samples with the highest claimed asbestos content were tested.  The tests were conducted in simulated‐bathroom controlled chambers with volunteers who were talc users.  Air sampling filters were prepared by direct preparation techniques and analyzed by phase contrast microscopy (PCM), transmission electron microscopy (TEM) with energy‐dispersive x‐ray (EDX) spectra, and selective area diffraction (SAED).  TEM analysis for asbestos resulted in no confirmed asbestos fibers and only a single fiber classified as “ambiguous.”  Hypothetical treatment of this fiber as if it were asbestos yields a risk of 9.6 × 10?7 (under one in one million) for a lifetime user of this cosmetic talcum powder.  The exposure levels associated with these results range from zero to levels far below those identified in the epidemiology literature as posing a risk for asbestos‐related disease, and substantially below published historical environmental background levels.  The approaches used for this study have potential application to exposure evaluations of other talc or asbestos‐containing materials and consumer products.  相似文献   

8.
Asbestos lung cancer risks: comparison of animal and human extrapolations   总被引:1,自引:0,他引:1  
Using the most comprehensive inhalation study available, (Wagner, et al., 1974), the dose-response effects of the four major types of asbestos fibers (amosite, anthophyllite, crocidolite, and chrysotile: Canadian, Rhodesian) for lung cancer have been determined. From linear regression analysis of the animal data and five human epidemiology studies giving a wide range of risk estimates, slopes of the curves have been determined and lifetime risk estimates made. Projected risks for rats are presented with and without surface area (s.a.) conversion factors. On the basis of cumulative exposure, the geometric mean of the point estimates for the human studies (0.0146) is quite close to the geometric mean of the animal data (0.0179 without s.a.; 0.0122 with s.a. calculations). These values also match quite well if one of the studies (McDonald, et al.) is eliminated (geometric mean = 0.031) due to qualitatively different exposure considerations (mining and milling vs. industrial environments). Animal risks based on a concentration per day basis (assuming an average 70-year lifespan for humans) are below the lowest human estimate but within 5-6 fold (less) of the projected risk from nonsmoking asbestos workers (2.2 X 10(-3) using the Hammond et al. study.  相似文献   

9.
10.
To assess the maximum possible impact of further government regulation of asbestos exposure, projections were made of the use of asbestos in nine product categories for the years 1985-2000. A life table risk assessment model was then developed to estimate the excess cases of cancer and lost person-years of life likely to occur among those occupationally and nonoccupationally exposed to the nine asbestos product categories manufactured in 1985-2000. These estimates were made under the assumption that government regulation remains at its 1985 level. Use of asbestos in the nine product categories was predicted to decline in all cases except for friction products. The risk assessment results show that, although the cancer risks from future exposure to asbestos are significantly less than those from past exposures, in the absence of more stringent regulations, a health risk remains.  相似文献   

11.
The mesothelioma epidemic in the United States, which peaked during the 2000–2004 period, can be traced to high‐level asbestos exposures experienced by males in occupational settings prior to the full recognition of the disease‐causing potential of asbestos and the establishment of enforceable asbestos exposure limits by the Occupational Safety and Health Administration (OSHA) in 1971. Many individuals diagnosed with mesothelioma where asbestos has been identified as a contributing cause of the disease have filed claims seeking compensation from asbestos settlement trusts or through the court system. An individual with mesothelioma typically has been exposed to asbestos in more than one setting and from more than one asbestos product. Apportioning risk for mesothelioma among contributing factors is an ongoing problem faced by occupational disease compensation boards, juries, parties responsible for paying damages, and currently by the U.S. Senate in its efforts to formulate a bill establishing an asbestos settlement trust. In this article we address the following question: If an individual with mesothelioma where asbestos has been identified as a contributing cause were to be compensated for his or her disease, how should that compensation be apportioned among those responsible for the asbestos exposures? For the purposes of apportionment, we assume that asbestos is the only cause of mesothelioma and that every asbestos exposure contributes, albeit differentially, to the risk. We use an extension of the mesothelioma risk model initially proposed in the early 1980s to quantify the contribution to risk of each exposure as a percentage of the total risk. The percentage for each specific discrete asbestos exposure depends on the start and end dates, the intensity, and the asbestos fiber type for the exposure. We provide justification for the use of the mesothelioma risk model for apportioning risk and discuss how to assess uncertainty associated with its application.  相似文献   

12.
In many cases, human health risk from biological agents is associated with aerosol exposures. Because air concentrations decline rapidly after a release, it may be necessary to use concentrations found in other environmental media to infer future or past aerosol exposures. This article presents an approach for linking environmental concentrations of Bacillus. anthracis (B. anthracis) spores on walls, floors, ventilation system filters, and in human nasal passages with human health risk from exposure to B. anthracis spores. This approach is then used to calculate example values of risk‐informed concentration standards for both retrospective risk mitigation (e.g., prophylactic antibiotics) and prospective risk mitigation (e.g., environmental clean up and reoccupancy). A large number of assumptions are required to calculate these values, and the resulting values have large uncertainties associated with them. The values calculated here suggest that documenting compliance with risks in the range of 10?4 to 10?6 would be challenging for small diameter (respirable) spore particles. For less stringent risk targets and for releases of larger diameter particles (which are less respirable and hence less hazardous), environmental sampling would be more promising.  相似文献   

13.
In the days following the collapse of the World Trade Center (WTC) towers on September 11, 2001 (9/11), the U.S. Environmental Protection Agency (EPA) initiated numerous air monitoring activities to better understand the ongoing impact of emissions from that disaster. Using these data, EPA conducted an inhalation exposure and human health risk assessment to the general population. This assessment does not address exposures and potential impacts that could have occurred to rescue workers, firefighters, and other site workers, nor does it address exposures that could have occurred in the indoor environment. Contaminants evaluated include particulate matter (PM), metals, polychlorinated biphenyls, dioxins, asbestos, volatile organic compounds, particle-bound polycyclic aromatic hydrocarbons, silica, and synthetic vitreous fibers (SVFs). This evaluation yielded three principal findings. (1) Persons exposed to extremely high levels of ambient PM and its components, SVFs, and other contaminants during the collapse of the WTC towers, and for several hours afterward, were likely to be at risk for acute and potentially chronic respiratory effects. (2) Available data suggest that contaminant concentrations within and near ground zero (GZ) remained significantly elevated above background levels for a few days after 9/11. Because only limited data on these critical few days were available, exposures and potential health impacts could not be evaluated with certainty for this time period. (3) Except for inhalation exposures that may have occurred on 9/11 and a few days afterward, the ambient air concentration data suggest that persons in the general population were unlikely to suffer short-term or long-term adverse health effects caused by inhalation exposures. While this analysis by EPA evaluated the potential for health impacts based on measured air concentrations, epidemiological studies conducted by organizations other than EPA have attempted to identify actual impacts. Such studies have identified respiratory effects in worker and general populations, and developmental effects in newborns whose mothers were near GZ on 9/11 or shortly thereafter. While researchers are not able to identify specific times and even exactly which contaminants are the cause of these effects, they have nonetheless concluded that exposure to WTC contaminants (and/or maternal stress, in the case of developmental effects) resulted in these effects, and have identified the time period including 9/11 itself and the days and few weeks afterward as a period of most concern based on high concentrations of key pollutants in the air and dust.  相似文献   

14.
Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure scenarios, skin surface loading and unloading rates, and contaminant movement through the epidermis. In this article we (1) develop and test a finite-difference model of contaminant transport through the epidermis; (2) develop archetypal exposure scenarios based on behavioral data to estimate characteristic loading and unloading rates; and (3) quantify 24-hour accumulation below the epidermis by applying a Monte Carlo simulation of these archetypal exposure scenarios. The numerical model, called Transient Transport through the epiDERMis (TTDERM), allows us to account for variable exposure times and time between exposures, temporal and spatial variations in skin and compound properties, and uncertainty in model parameters. Using TTDERM we investigate the use of a macro-activity parameter (cumulative contact time) for predicting daily (24-hour) integrated uptake of pesticides during complex exposure scenarios. For characteristic child behaviors and hand loading and unloading rates, we find that a power law represents the relationship between cumulative contact time and cumulative mass transport through the skin. With almost no loss of reliability, this simple relationship can be used in place of the more complex micro-activity simulations that require activity data on one- to five-minute intervals. The methods developed in this study can be used to guide dermal exposure model refinements and exposure measurement study design.  相似文献   

15.
Questions persist regarding assessment of workers’ exposures to products containing low levels of benzene, such as mineral spirit solvent (MSS). This study summarizes previously unpublished data for parts‐washing activities, and evaluates potential daily and lifetime cumulative benzene exposures incurred by workers who used historical and current formulations of a recycled mineral spirits solvent in manual parts washers. Measured benzene concentrations in historical samples from parts‐washing operations were frequently below analytical detection limits. To better assess benzene exposure among these workers, air‐to‐solvent concentration ratios measured for toluene, ethylbenzene, and xylenes (TEX) were used to predict those for benzene based on a statistical model, conditional on physical‐chemical theory supported by new thermodynamic calculations of TEX and benzene activity coefficients in a modeled MSS‐type solvent. Using probabilistic methods, the distributions of benzene concentrations were then combined with distributions of other exposure parameters to estimate eight‐hour time‐weighted average (TWA) exposure concentration distributions and corresponding daily respiratory dose distributions for workers using these solvents in parts washers. The estimated 50th (95th) percentile of the daily respiratory dose and corresponding eight‐hour TWA air concentration for workers performing parts washing are 0.079 (0.77) mg and 0.0030 (0.028) parts per million by volume (ppm) for historical solvent, and 0.020 (0.20) mg and 0.00078 (0.0075) ppm for current solvent, respectively. Both 95th percentile eight‐hour TWA respiratory exposure estimates for solvent formulations are less than 10% of the current Occupational Safety and Health Administration permissible exposure limit of 1.0 ppm for benzene.  相似文献   

16.
Aggregate exposure metrics based on sums or weighted averages of component exposures are widely used in risk assessments of complex mixtures, such as asbestos-associated dusts and fibers. Allowed exposure levels based on total particle or fiber counts and estimated ambient concentrations of such mixtures may be used to make costly risk-management decisions intended to protect human health and to remediate hazardous environments. We show that, in general, aggregate exposure information alone may be inherently unable to guide rational risk-management decisions when the components of the mixture differ significantly in potency and when the percentage compositions of the mixture exposures differ significantly across locations. Under these conditions, which are not uncommon in practice, aggregate exposure metrics may be "worse than useless," in that risk-management decisions based on them are less effective than decisions that ignore the aggregate exposure information and select risk-management actions at random. The potential practical significance of these results is illustrated by a case study of 27 exposure scenarios in El Dorado Hills, California, where applying an aggregate unit risk factor (from EPA's IRIS database) to aggregate exposure metrics produces average risk estimates about 25 times greater - and of uncertain predictive validity - compared to risk estimates based on specific components of the mixture that have been hypothesized to pose risks of human lung cancer and mesothelioma.  相似文献   

17.
Upperbound lifetime excess cancer risks were calculated for activities associated with asbestos abatement using a risk assessment framework developed for EPA's Superfund program. It was found that removals were associated with cancer risks to workers which were often greater than the commonly accepted cancer risk of 1 x 10(-6), although lower than occupational exposure limits associated with risks of 1 x 10(-3). Removals had little effect in reducing risk to school populations. Risks to teachers and students in school buildings containing asbestos were approximately the same as risks associated with exposure to ambient asbestos by the general public and were below the levels typically of concern to regulatory agencies. During abatement, however, there were increased risks to both workers and nearby individuals. Careless, everyday building maintenance generated the greatest risk to workers followed by removals and encapsulation. If asbestos abatement was judged by the risk criteria applied to EPA's Superfund program, the no-action alternative would likely be selected in preference to removal in a majority of cases. These conclusions should only be interpreted within the context of an overall asbestos risk management program, which includes consideration of specific fiber types and sizes, sampling and analytical limitations, physical condition of asbestos-containing material, episodic peak exposures, and the number of people potentially exposed.  相似文献   

18.
Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern.  相似文献   

19.
We review approaches for characterizing “peak” exposures in epidemiologic studies and methods for incorporating peak exposure metrics in dose–response assessments that contribute to risk assessment. The focus was on potential etiologic relations between environmental chemical exposures and cancer risks. We searched the epidemiologic literature on environmental chemicals classified as carcinogens in which cancer risks were described in relation to “peak” exposures. These articles were evaluated to identify some of the challenges associated with defining and describing cancer risks in relation to peak exposures. We found that definitions of peak exposure varied considerably across studies. Of nine chemical agents included in our review of peak exposure, six had epidemiologic data used by the U.S. Environmental Protection Agency (US EPA) in dose–response assessments to derive inhalation unit risk values. These were benzene, formaldehyde, styrene, trichloroethylene, acrylonitrile, and ethylene oxide. All derived unit risks relied on cumulative exposure for dose–response estimation and none, to our knowledge, considered peak exposure metrics. This is not surprising, given the historical linear no‐threshold default model (generally based on cumulative exposure) used in regulatory risk assessments. With newly proposed US EPA rule language, fuller consideration of alternative exposure and dose–response metrics will be supported. “Peak” exposure has not been consistently defined and rarely has been evaluated in epidemiologic studies of cancer risks. We recommend developing uniform definitions of “peak” exposure to facilitate fuller evaluation of dose response for environmental chemicals and cancer risks, especially where mechanistic understanding indicates that the dose response is unlikely linear and that short‐term high‐intensity exposures increase risk.  相似文献   

20.
Elodie Adida 《Risk analysis》2011,31(10):1622-1631
An effective nonpharmaceutical intervention for influenza interrupts an exposure route that contributes significantly to infection risk. Herein, we use uncertainty analysis (point‐interval method) and Monte Carlo simulation to explore the magnitude of infection risk and predominant route of exposure. We utilized a previously published mathematical model of a susceptible person attending a bed‐ridden infectious person. Infection risk is sensitive to the magnitude of virus emission and contact rates. The contribution of droplet spray exposure to infection risk increases with cough frequency, and decreases with virus concentration in cough particles. We consider two infectivity scenarios: greater infectivity of virus deposited in the upper respiratory tract than virus inhaled in respirable aerosols, based on human studies; and equal infectivity in the two locations, based on studies in guinea pigs. Given that virus have equal probability of infection throughout the respiratory tract, the mean overall infection risk is 9.8 × 10?2 (95th percentile 0.78). However, when virus in the upper respiratory tract is less infectious than inhaled virus, the overall infection risk is several orders of magnitude lower. In this event, inhalation is a significant exposure route. Contact transmission is important in both infectivity scenarios. The presence of virus in only respirable particles increases the mean overall infection risk by 1–3 orders of magnitude, with inhalation contributing ≥ 99% of the infection risk. The analysis indicates that reduction of uncertainties in the concentration of virus in expiratory particles of different sizes, expiratory event frequency, and infectivity at different sites in the respiratory tract will clarify the predominate exposure routes for influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号