首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cost‐benefit evaluation of passive fire protection adoption in the road transport of liquefied petroleum gas (LPG) was investigated. In a previous study, mathematical simulations of real scale fire scenarios proved the effectiveness of passive fire protections in preventing the “fired” boiling liquid expanding vapor explosion (BLEVE), thus providing a significant risk reduction. In the present study the economical aspects of the adoption of fire protections are analyzed and an approach to cost‐benefit analysis (CBA) is proposed. The CBA model is based on the comparison of the risk reduction due to fire protections (expressed in monetary terms by the value of a statistical life) and the cost of the application of fire protections to a fleet of tankers. Different types of fire protections were considered, as well as the possibility to apply protections to the entire fleet or only to a part of it. The application of the proposed model to a real‐life case study is presented and discussed. Results demonstrate that the adoption of passive fire protections on road tankers, though not compulsory in Europe, can be economically feasible, thus representing a concrete measure to achieve control of the “major hazard accidents” cited by the European legislation.  相似文献   

2.
Risk‐benefit analyses are introduced as a new paradigm for old problems. However, in many cases it is not always necessary to perform a full comprehensive and expensive quantitative risk‐benefit assessment to solve the problem, nor is it always possible, given the lack of required date. The choice to continue from a more qualitative to a full quantitative risk‐benefit assessment can be made using a tiered approach. In this article, this tiered approach for risk‐benefit assessment will be addressed using a decision tree. The tiered approach described uses the same four steps as the risk assessment paradigm: hazard and benefit identification, hazard and benefit characterization, exposure assessment, and risk‐benefit characterization, albeit in a different order. For the purpose of this approach, the exposure assessment has been moved upward and the dose‐response modeling (part of hazard and benefit characterization) is moved to a later stage. The decision tree includes several stop moments, depending on the situation where the gathered information is sufficient to answer the initial risk‐benefit question. The approach has been tested for two food ingredients. The decision tree presented in this article is useful to assist on a case‐by‐case basis a risk‐benefit assessor and policymaker in making informed choices when to stop or continue with a risk‐benefit assessment.  相似文献   

3.
This study presents a tree‐based logistic regression approach to assessing work zone casualty risk, which is defined as the probability of a vehicle occupant being killed or injured in a work zone crash. First, a decision tree approach is employed to determine the tree structure and interacting factors. Based on the Michigan M‐94\I‐94\I‐94BL\I‐94BR highway work zone crash data, an optimal tree comprising four leaf nodes is first determined and the interacting factors are found to be airbag, occupant identity (i.e., driver, passenger), and gender. The data are then split into four groups according to the tree structure. Finally, the logistic regression analysis is separately conducted for each group. The results show that the proposed approach outperforms the pure decision tree model because the former has the capability of examining the marginal effects of risk factors. Compared with the pure logistic regression method, the proposed approach avoids the variable interaction effects so that it significantly improves the prediction accuracy.  相似文献   

4.
In recent years, media formats with risk‐glorifying content, such as video games that simulate illegal street racing (“bang and crash” games), films about extreme sports, and risky stunts have emerged as top sellers of the media industry. A variety of recent studies conducted by several researchers revealed that exposure to risk‐glorifying media content (e.g., video games that simulate reckless driving, smoking and drinking in movies, or depictions that glorify extreme sports) increases the likelihood that recipients will show increased levels of risk‐taking inclinations and behaviors. The present article (1) reviews the latest research on the detrimental impact of risk‐glorifying media on risk‐taking inclinations (cognitions, emotions, behaviors), (2) puts these findings in the theoretical context of recent sociocognitive models on media effects, and (3) makes suggestions to science and policymakers on how to deal with these effects in the future.  相似文献   

5.
《Risk analysis》2018,38(7):1361-1377
Previous research has shown that men and women, on average, have different risk attitudes and may therefore see different value propositions in response to new opportunities. We use data from smallholder farm households in Mali to test whether risk perceptions differ by gender and across domains. We model this potential association across six risks (work injury, extreme weather, community relationships, debt, lack of buyers, and conflict) while controlling for demographic and attitudinal characteristics. Factor analysis highlights extreme weather and conflict as eliciting the most distinct patterns of participant response. Regression analysis for Mali as a whole reveals an association between gender and risk perception, with women expressing more concern except in the extreme weather domain; however, the association with gender is largely absent when models control for geographic region. We also find lower risk perception associated with an individualistic and/or fatalistic worldview, a risk‐tolerant outlook, and optimism about the future, while education, better health, a social orientation, self‐efficacy, and access to information are generally associated with more frequent worry—with some inconsistency. Income, wealth, and time poverty exhibit complex associations with perception of risk. Understanding whether and how men's and women's risk preferences differ, and identifying other dominant predictors such as geographic region and worldview, could help development organizations to shape risk mitigation interventions to increase the likelihood of adoption, and to avoid inadvertently making certain subpopulations worse off by increasing the potential for negative outcomes.  相似文献   

6.
This project describes a methodology for assessing relative risk along a transportation corridor utilizing waterborne transportation on the busiest port area in the world, the lower Mississippi River (from the mouth of Southwest Pass up through Baton Rouge, Louisiana). The paper calculates a relative risk scale, using data obtained from maritime experts, previous research, and existing databases. The research aggregates the vessel traffic data and geographic risk location data to produce relative risk scores for each mile along the River from the mouth of Southwest Pass to the termination of shipping at the U.S. 190 bridge across the River at Baton Rouge. This is done in a very simple and practical way for this initial model: (1) each vessel traveling the Mississippi is classified according to its risk potential for those miles that it passes in route to where it docks, and (2) points along the river are assigned a relative risk score based upon risk variables identified by expérts identified through a standard sampling procedure. The relative risk scores for river miles are combinations of these two factors.  相似文献   

7.
Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net‐water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics‐based entropy method. The weighted indices were input into the WNB‐based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image‐based sampling and validation, cell‐by‐cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood‐related environmental hazard studies.  相似文献   

8.
This article presents a flood risk analysis model that considers the spatially heterogeneous nature of flood events. The basic concept of this approach is to generate a large sample of flood events that can be regarded as temporal extrapolation of flood events. These are combined with cumulative flood impact indicators, such as building damages, to finally derive time series of damages for risk estimation. Therefore, a multivariate modeling procedure that is able to take into account the spatial characteristics of flooding, the regionalization method top‐kriging, and three different impact indicators are combined in a model chain. Eventually, the expected annual flood impact (e.g., expected annual damages) and the flood impact associated with a low probability of occurrence are determined for a study area. The risk model has the potential to augment the understanding of flood risk in a region and thereby contribute to enhanced risk management of, for example, risk analysts and policymakers or insurance companies. The modeling framework was successfully applied in a proof‐of‐concept exercise in Vorarlberg (Austria). The results of the case study show that risk analysis has to be based on spatially heterogeneous flood events in order to estimate flood risk adequately.  相似文献   

9.
We conducted a regional‐scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN‐RRM) to a case study of the South River, Virginia mercury‐contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor–multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN‐RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape.  相似文献   

10.
Modeling the dependence between uncertainties in decision and risk analyses is an important part of the problem structuring process. We focus on situations where correlated uncertainties are discrete, and extend the concept of the copula‐based approach for modeling correlated continuous uncertainties to the representation of correlated discrete uncertainties. This approach reduces the required number of probability assessments significantly compared to approaches requiring direct estimates of conditional probabilities. It also allows the use of multiple dependence measures, including product moment correlation, rank order correlation and tail dependence, and parametric families of copulas such as normal copulas, t‐copulas, and Archimedean copulas. This approach can be extended to model the dependence between discrete and continuous uncertainties in the same event tree.  相似文献   

11.
Timely warning communication and decision making are critical for reducing harm from flash flooding. To help understand and improve extreme weather risk communication and management, this study uses a mental models research approach to investigate the flash flood warning system and its risk decision context. Data were collected in the Boulder, Colorado area from mental models interviews with forecasters, public officials, and media broadcasters, who each make important interacting decisions in the warning system, and from a group modeling session with forecasters. Analysis of the data informed development of a decision‐focused model of the flash flood warning system that integrates the professionals’ perspectives. Comparative analysis of individual and group data with this model characterizes how these professionals conceptualize flash flood risks and associated uncertainty; create and disseminate flash flood warning information; and perceive how warning information is (and should be) used in their own and others’ decisions. The analysis indicates that warning system functioning would benefit from professionals developing a clearer, shared understanding of flash flood risks and the warning system, across their areas of expertise and job roles. Given the challenges in risk communication and decision making for complex, rapidly evolving hazards such as flash floods, another priority is development of improved warning content to help members of the public protect themselves when needed. Also important is professional communication with members of the public about allocation of responsibilities for managing flash flood risks, as well as improved system‐wide management of uncertainty in decisions.  相似文献   

12.
Two images, “black swans” and “perfect storms,” have struck the public's imagination and are used—at times indiscriminately—to describe the unthinkable or the extremely unlikely. These metaphors have been used as excuses to wait for an accident to happen before taking risk management measures, both in industry and government. These two images represent two distinct types of uncertainties (epistemic and aleatory). Existing statistics are often insufficient to support risk management because the sample may be too small and the system may have changed. Rationality as defined by the von Neumann axioms leads to a combination of both types of uncertainties into a single probability measure—Bayesian probability—and accounts only for risk aversion. Yet, the decisionmaker may also want to be ambiguity averse. This article presents an engineering risk analysis perspective on the problem, using all available information in support of proactive risk management decisions and considering both types of uncertainty. These measures involve monitoring of signals, precursors, and near‐misses, as well as reinforcement of the system and a thoughtful response strategy. It also involves careful examination of organizational factors such as the incentive system, which shape human performance and affect the risk of errors. In all cases, including rare events, risk quantification does not allow “prediction” of accidents and catastrophes. Instead, it is meant to support effective risk management rather than simply reacting to the latest events and headlines.  相似文献   

13.
Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life‐cycle assessments and cost‐benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil‐fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high‐level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions.  相似文献   

14.
Cost‐benefit analysis (CBA) is commonly applied as a tool for deciding on risk protection. With CBA, one can identify risk mitigation strategies that lead to an optimal tradeoff between the costs of the mitigation measures and the achieved risk reduction. In practical applications of CBA, the strategies are typically evaluated through efficiency indicators such as the benefit‐cost ratio (BCR) and the marginal cost (MC) criterion. In many of these applications, the BCR is not consistently defined, which, as we demonstrate in this article, can lead to the identification of suboptimal solutions. This is of particular relevance when the overall budget for risk reduction measures is limited and an optimal allocation of resources among different subsystems is necessary. We show that this problem can be formulated as a hierarchical decision problem, where the general rules and decisions on the available budget are made at a central level (e.g., central government agency, top management), whereas the decisions on the specific measures are made at the subsystem level (e.g., local communities, company division). It is shown that the MC criterion provides optimal solutions in such hierarchical optimization. Since most practical applications only include a discrete set of possible risk protection measures, the MC criterion is extended to this situation. The findings are illustrated through a hypothetical numerical example. This study was prepared as part of our work on the optimal management of natural hazard risks, but its conclusions also apply to other fields of risk management.  相似文献   

15.
This study integrated risk‐benefit analysis with prospect theory with the overall objective of identifying the type of management behavior represented by farmers’ choices of mastitis control options (MCOs). Two exploratory factor analyses, based on 163 and 175 Swedish farmers, respectively, highlighted attitudes to MCOs related to: (1) grouping cows and applying milking order to prevent spread of existing infection and (2) working in a precautionary way to prevent mastitis occurring. This was interpreted as being based on (1) reactive management behavior on detection of udder‐health problems in individual cows and (2) proactive management behavior to prevent mastitis developing. Farmers’ assessments of these MCOs were found to be based on asymmetrical evaluations of risks and benefits, suggesting that farmers’ management behavior depends on their individual reference point. In particular, attitudes to MCOs related to grouping cows and applying milking order to prevent the spread of mastitis once infected cows were detected were stronger in the risk domain than in the benefit domain, in accordance with loss aversion. In contrast, attitudes to MCOs related to working in a precautionary way to prevent cows from becoming infected in the first place were stronger in the benefit domain than in the risk domain, in accordance with reverse loss aversion. These findings are of practical importance for farmers and agribusiness and in public health protection work to reduce the current extensive use of antibiotics in dairy herds.  相似文献   

16.
The objective of this article is to evaluate the performance of the COM‐Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM‐Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over‐ or underdispersion. Over the last year, the COM‐Poisson GLM has been evaluated in the context of crash data analysis and it has been shown that the model performs as well as the Poisson‐gamma model for crash data exhibiting overdispersion. To accomplish the objective of this study, several COM‐Poisson models were estimated using crash data collected at 162 railway‐highway crossings in South Korea between 1998 and 2002. This data set has been shown to exhibit underdispersion when models linking crash data to various explanatory variables are estimated. The modeling results were compared to those produced from the Poisson and gamma probability models documented in a previous published study. The results of this research show that the COM‐Poisson GLM can handle crash data when the modeling output shows signs of underdispersion. Finally, they also show that the model proposed in this study provides better statistical performance than the gamma probability and the traditional Poisson models, at least for this data set.  相似文献   

17.
Tim Bedford 《Risk analysis》2013,33(10):1884-1898
Group risk is usually represented by FN curves showing the frequency of different accident sizes for a given activity. Many governments regulate group risk through FN criterion lines, which define the tolerable location of an FN curve. However, to compare different risk reduction alternatives, one must be able to rank FN curves. The two main problems in doing this are that the FN curve contains multiple frequencies, and that there are usually large epistemic uncertainties about the curve. Since the mid 1970s, a number of authors have used the concept of “disutility” to summarize FN curves in which a family of disutility functions was defined with a single parameter controlling the degree of “risk aversion.” Here, we show it to be risk neutral, disaster averse, and insensitive to epistemic uncertainty on accident frequencies. A new approach is outlined that has a number of attractive properties. The formulation allows us to distinguish between risk aversion and disaster aversion, two concepts that have been confused in the literature until now. A two‐parameter family of disutilities generalizing the previous approach is defined, where one parameter controls risk aversion and the other disaster aversion. The family is sensitive to epistemic uncertainties. Such disutilities may, for example, be used to compare the impact of system design changes on group risks, or might form the basis for valuing reductions in group risk in a cost‐benefit analysis.  相似文献   

18.
Eyvind Aven  Terje Aven 《Risk analysis》2015,35(9):1706-1716
This article addresses the issue of how performance and risk management can complement each other in order to enhance the management of an enterprise. Often, we see that risk management focuses on goal achievements and not the enterprise risk related to its activities in the value chain. The statement “no goal, no risk” is a common misconception. The main aim of the article is to present a normative model for describing the links between performance and risk, and to use this model to give recommendations on how to best structure and plan the management of an enterprise in situations involving risk and uncertainties. The model, which has several novel features, is based on the interaction between different types of risk management (enterprise risk management, task risk management, and personal risk management) and a structure where the enterprise risk management overrules both the task and personal risk management. To illustrate the model we use the metaphor of a ship, where the ship is loaded with cash‐generating activities and has a direction over time determined by the overall strategic objectives. Compared to the current enterprise risk management practice, the model and related analysis are founded on a new perspective on risk, highlighting knowledge and uncertainties beyond probabilities.  相似文献   

19.
《Risk analysis》2018,38(2):410-424
This article proposes a rigorous mathematical approach, named a reliability‐based capability approach (RCA), to quantify the societal impact of a hazard. The starting point of the RCA is a capability approach in which capabilities refer to the genuine opportunities open to individuals to achieve valuable doings and beings (such as being mobile and being sheltered) called functionings. Capabilities depend on what individuals have and what they can do with what they have. The article develops probabilistic predictive models that relate the value of each functioning to a set of easily predictable or measurable quantities (regressors) in the aftermath of a hazard. The predicted values of selected functionings for an individual collectively determine the impact of a hazard on his/her state of well‐being. The proposed RCA integrates the predictive models of functionings into a system reliability problem to determine the probability that the state of well‐being is acceptable, tolerable, or intolerable. Importance measures are defined to quantify the contribution of each functioning to the state of well‐being. The information from the importance measures can inform decisions on optimal allocation of limited resources for risk mitigation and management.  相似文献   

20.
Elodie Adida 《Risk analysis》2011,31(10):1622-1631
An effective nonpharmaceutical intervention for influenza interrupts an exposure route that contributes significantly to infection risk. Herein, we use uncertainty analysis (point‐interval method) and Monte Carlo simulation to explore the magnitude of infection risk and predominant route of exposure. We utilized a previously published mathematical model of a susceptible person attending a bed‐ridden infectious person. Infection risk is sensitive to the magnitude of virus emission and contact rates. The contribution of droplet spray exposure to infection risk increases with cough frequency, and decreases with virus concentration in cough particles. We consider two infectivity scenarios: greater infectivity of virus deposited in the upper respiratory tract than virus inhaled in respirable aerosols, based on human studies; and equal infectivity in the two locations, based on studies in guinea pigs. Given that virus have equal probability of infection throughout the respiratory tract, the mean overall infection risk is 9.8 × 10?2 (95th percentile 0.78). However, when virus in the upper respiratory tract is less infectious than inhaled virus, the overall infection risk is several orders of magnitude lower. In this event, inhalation is a significant exposure route. Contact transmission is important in both infectivity scenarios. The presence of virus in only respirable particles increases the mean overall infection risk by 1–3 orders of magnitude, with inhalation contributing ≥ 99% of the infection risk. The analysis indicates that reduction of uncertainties in the concentration of virus in expiratory particles of different sizes, expiratory event frequency, and infectivity at different sites in the respiratory tract will clarify the predominate exposure routes for influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号