首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we consider the Bayes and empirical Bayes problem of the current population mean of a finite population when the sample data is available from other similar (m-1) finite populations. We investigate a general class of linear estimators and obtain the optimal linear Bayes estimator of the finite population mean under a squared error loss function that considered the cost of sampling. The optimal linear Bayes estimator and the sample size are obtained as a function of the parameters of the prior distribution. The corresponding empirical Bayes estimates are obtained by replacing the unknown hyperparameters with their respective consistent estimates. A Monte Carlo study is conducted to evaluate the performance of the proposed empirical Bayes procedure.  相似文献   

2.
Abstract

The shape parameter of Topp–Leone distribution is estimated in this article from the Bayesian viewpoint under the assumption of known scale parameter. Bayes and empirical Bayes estimates of the unknown parameter are proposed under non informative and suitable conjugate priors. These estimates are derived under the assumption of squared and linear-exponential error loss functions. The risk functions of the proposed estimates are derived in analytical forms. It is shown that the proposed estimates are minimax and admissible. The consistency of the proposed estimates under the squared error loss function is also proved. Numerical examples are provided.  相似文献   

3.
In a class action litigation, actual damages are not known exactly and must be estimated. Various estimators are proposed and assessed by using a model that identifies possible sources of error. Estimators that have been used in practice are shown to be seriously biased. An empirical Bayes estimator and an empirical minimal mean squared error estimator are found to be more satisfactory methods for estimating damages.  相似文献   

4.
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.  相似文献   

5.
Recently, Kokonendji et al. have adapted the well-known Nadaraya–Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji et al. The model error is considered as Gaussian with mean of zero and a variance of σ2. The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.  相似文献   

6.
Empirical Bayes (EB) estimates in general linear mixed models are useful for the small area estimation in the sense of increasing precision of estimation of small area means. However, one potential difficulty of EB is that the overall estimate for a larger geographical area based on a (weighted) sum of EB estimates is not necessarily identical to the corresponding direct estimate such as the overall sample mean. Another difficulty is that EB estimates yield over‐shrinking, which results in the sampling variance smaller than the posterior variance. One way to fix these problems is the benchmarking approach based on the constrained empirical Bayes (CEB) estimators, which satisfy the constraints that the aggregated mean and variance are identical to the requested values of mean and variance. In this paper, we treat the general mixed models, derive asymptotic approximations of the mean squared error (MSE) of CEB and provide second‐order unbiased estimators of MSE based on the parametric bootstrap method. These results are applied to natural exponential families with quadratic variance functions. As a specific example, the Poisson‐gamma model is dealt with, and it is illustrated that the CEB estimates and their MSE estimates work well through real mortality data.  相似文献   

7.
We consider estimation of the unknown parameters of Chen distribution [Chen Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Statist Probab Lett. 2000;49:155–161] with bathtub shape using progressive-censored samples. We obtain maximum likelihood estimates by making use of an expectation–maximization algorithm. Different Bayes estimates are derived under squared error and balanced squared error loss functions. It is observed that the associated posterior distribution appears in an intractable form. So we have used an approximation method to compute these estimates. A Metropolis–Hasting algorithm is also proposed and some more approximate Bayes estimates are obtained. Asymptotic confidence interval is constructed using observed Fisher information matrix. Bootstrap intervals are proposed as well. Sample generated from MH algorithm are further used in the construction of HPD intervals. Finally, we have obtained prediction intervals and estimates for future observations in one- and two-sample situations. A numerical study is conducted to compare the performance of proposed methods using simulations. Finally, we analyse real data sets for illustration purposes.  相似文献   

8.
In this paper, the problem of estimating unknown parameters of a two-parameter Kumaraswamy-Exponential (Kw-E) distribution is considered based on progressively type-II censored sample. The maximum likelihood (ML) estimators of the parameters are obtained. Bayes estimates are also obtained using different loss functions such as squared error, LINEX and general entropy. Lindley's approximation method is used to evaluate these Bayes estimates. Monte Carlo simulation is used for numerical comparison between various estimates developed in this paper.  相似文献   

9.
In this article, we consider the multiple step stress model based on the cumulative exposure model assumption. Here, it is assumed that for a given stress level, the lifetime of the experimental units follows exponential distribution and the expected lifetime decreases as the stress level increases. We mainly focus on the order restricted inference of the unknown parameters of the lifetime distributions. First we consider the order restricted maximum likelihood estimators (MLEs) of the model parameters. It is well known that the order restricted MLEs cannot be obtained in explicit forms. We propose an algorithm that stops in finite number of steps and it provides the MLEs. We further consider the Bayes estimates and the associated credible intervals under the squared error loss function. Due to the absence of explicit form of the Bayes estimates, we propose to use the importance sampling technique to compute Bayes estimates. We provide an extensive simulation study in case of three stress levels mainly to see the performance of the proposed methods. Finally the analysis of one real data set has been provided for illustrative purposes.  相似文献   

10.
Development of anti-cancer therapies usually involve small to moderate size studies to provide initial estimates of response rates before initiating larger studies to better quantify response. These early trials often each contain a single tumor type, possibly using other stratification factors. Response rate for a given tumor type is routinely reported as the percentage of patients meeting a clinical criteria (e.g. tumor shrinkage), without any regard to response in the other studies. These estimates (called maximum likelihood estimates or MLEs) on average approximate the true value, but have variances that are usually large, especially for small to moderate size studies. The approach presented here is offered as a way to improve overall estimation of response rates when several small trials are considered by reducing the total uncertainty.The shrinkage estimators considered here (James-Stein/empirical Bayes and hierarchical Bayes) are alternatives that use information from all studies to provide potentially better estimates for each study. While these estimates introduce a small bias, they have a considerably smaller variance, and thus tend to be better in terms of total mean squared error. These procedures provide a better view of drug performance in that group of tumor types as a whole, as opposed to estimating each response rate individually without consideration of the others. In technical terms, the vector of estimated response rates is nearer the vector of true values, on average, than the vector of the usual unbiased MLEs applied to such trials.  相似文献   

11.
In this article, we deal with a two-parameter exponentiated half-logistic distribution. We consider the estimation of unknown parameters, the associated reliability function and the hazard rate function under progressive Type II censoring. Maximum likelihood estimates (M LEs) are proposed for unknown quantities. Bayes estimates are derived with respect to squared error, linex and entropy loss functions. Approximate explicit expressions for all Bayes estimates are obtained using the Lindley method. We also use importance sampling scheme to compute the Bayes estimates. Markov Chain Monte Carlo samples are further used to produce credible intervals for the unknown parameters. Asymptotic confidence intervals are constructed using the normality property of the MLEs. For comparison purposes, bootstrap-p and bootstrap-t confidence intervals are also constructed. A comprehensive numerical study is performed to compare the proposed estimates. Finally, a real-life data set is analysed to illustrate the proposed methods of estimation.  相似文献   

12.
Minimax squared error risk estimators of the mean of a multivariate normal distribution are characterized which have smallest Bayes risk with respect to a spherically symmetric prior distribution for (i) squared error loss, and (ii) zero-one loss depending on whether or not estimates are consistent with the hypothesis that the mean is null. In (i), the optimal estimators are the usual Bayes estimators for prior distributions with special structure. In (ii), preliminary test estimators are optimal. The results are obtained by applying the theory of minimax-Bayes-compromise decision problems.  相似文献   

13.
A Bayesian mixture model for differential gene expression   总被引:3,自引:0,他引:3  
Summary.  We propose model-based inference for differential gene expression, using a nonparametric Bayesian probability model for the distribution of gene intensities under various conditions. The probability model is a mixture of normal distributions. The resulting inference is similar to a popular empirical Bayes approach that is used for the same inference problem. The use of fully model-based inference mitigates some of the necessary limitations of the empirical Bayes method. We argue that inference is no more difficult than posterior simulation in traditional nonparametric mixture-of-normal models. The approach proposed is motivated by a microarray experiment that was carried out to identify genes that are differentially expressed between normal tissue and colon cancer tissue samples. Additionally, we carried out a small simulation study to verify the methods proposed. In the motivating case-studies we show how the nonparametric Bayes approach facilitates the evaluation of posterior expected false discovery rates. We also show how inference can proceed even in the absence of a null sample of known non-differentially expressed scores. This highlights the difference from alternative empirical Bayes approaches that are based on plug-in estimates.  相似文献   

14.
The beauty of the Bayesian approach is its ability to structure complicated models, inferential goals and analyses. To take full advantage of it, methods should be linked to an inferential goal via a loss function. For example, in the two-stage, compound sampling model the posterior means are optimal under squared error loss. However, they can perform poorly in estimating the histogram of the parameters or in ranking them. 'Triple-goal' estimates are motivated by the desire to have a set of estimates that produce good ranks, a good parameter histogram and good co-ordinate-specific estimates. No set of estimates can simultaneously optimize these three goals and we seek a set that strikes an effective trade-off. We evaluate and compare three candidate approaches: the posterior means, the constrained Bayes estimates of Louis and Ghosh, and a new approach that optimizes estimation of the histogram and the ranks. Mathematical and simulation-based analyses support the superiority of the new approach and document its excellent performance for the three inferential goals.  相似文献   

15.
Block and Basu bivariate exponential distribution is one of the most popular absolute continuous bivariate distributions. Recently, Kundu and Gupta [A class of absolute continuous bivariate distributions. Statist Methodol. 2010;7:464–477] introduced Block and Basu bivariate Weibull (BBBW) distribution, which is a generalization of the Block and Basu bivariate exponential distribution, and provided the maximum likelihood estimators using EM algorithm. In this paper, we consider the Bayesian inference of the unknown parameters of the BBBW distribution. The Bayes estimators are obtained with respect to the squared error loss function, and the prior distributions allow for prior dependence among the unknown parameters. Prior independence also can be obtained as a special case. It is observed that the Bayes estimators of the unknown parameters cannot be obtained in explicit forms. We propose to use the importance sampling technique to compute the Bayes estimates and also to construct the associated highest posterior density credible intervals. The analysis of two data sets has been performed for illustrative purposes. The performances of the proposed estimators are quite satisfactory. Finally, we generalize the results for the multivariate case.  相似文献   

16.
The Bayes estimates of estimable parameters of degree 2 are obtained against a Dirichlet invariant process prior and the squared error loss. Some examples are given with the limits of the Bayes estimates.  相似文献   

17.
In this article, based on progressively Type-II censored samples from a heterogeneous population that can be represented by a finite mixture of two-component Rayleigh lifetime model, the problem of estimating the parameters and some lifetime parameters (reliability and hazard functions) are considered. Both Bayesian and maximum likelihood estimators are of interest. A class of natural conjugate prior densities is considered in the Bayesian setting. The Bayes estimators are obtained using both the symmetric (squared error) loss function, and the asymmetric (LINEX and General Entropy) loss functions. It has been seen that the estimators obtained can be easily evaluated for this type of censoring by using suitable numerical methods. Finally, the performance of the estimates have been compared on the basis of their simulated maximum square error via a Monte Carlo simulation study.  相似文献   

18.
A generalized version of inverted exponential distribution (IED) is considered in this paper. This lifetime distribution is capable of modeling various shapes of failure rates, and hence various shapes of aging criteria. The model can be considered as another useful two-parameter generalization of the IED. Maximum likelihood and Bayes estimates for two parameters of the generalized inverted exponential distribution (GIED) are obtained on the basis of a progressively type-II censored sample. We also showed the existence, uniqueness and finiteness of the maximum likelihood estimates of the parameters of GIED based on progressively type-II censored data. Bayesian estimates are obtained using squared error loss function. These Bayesian estimates are evaluated by applying the Lindley's approximation method and via importance sampling technique. The importance sampling technique is used to compute the Bayes estimates and the associated credible intervals. We further consider the Bayes prediction problem based on the observed samples, and provide the appropriate predictive intervals. Monte Carlo simulations are performed to compare the performances of the proposed methods and a data set has been analyzed for illustrative purposes.  相似文献   

19.
ABSTRACT

In the empirical Bayes (EB) decision problem consisting of squared error estimation of the failure rate in exponential distribution, a prior Λ is placed on the gamma family of prior distributions to produce Bayes EB estimators which are admissible. A subclass of such estimators is shown to be asymptotically optimal (a.o.). The results of a Monte Carlo study are presented to demonstrate the a.o. property of the Bayes EB estimators.  相似文献   

20.
In this paper, the estimation of parameters, reliability and hazard functions of a inverted exponentiated half logistic distribution (IEHLD) from progressive Type II censored data has been considered. The Bayes estimates for progressive Type II censored IEHLD under asymmetric and symmetric loss functions such as squared error, general entropy and linex loss function are provided. The Bayes estimates for progressive Type II censored IEHLD parameters, reliability and hazard functions are also obtained under the balanced loss functions. However, the Bayes estimates cannot be obtained explicitly, Lindley approximation method and importance sampling procedure are considered to obtain the Bayes estimates. Furthermore, the asymptotic normality of the maximum likelihood estimates is used to obtain the approximate confidence intervals. The highest posterior density credible intervals of the parameters based on importance sampling procedure are computed. Simulations are performed to see the performance of the proposed estimates. For illustrative purposes, two data sets have been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号