首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ABSTRACT

In this paper, we use the idea of order statistics from independent and non-identically distributed random variables to propose ordered partially ordered judgment subset sampling (OPOJSS) and then develop optimal linear parametric inferences. The best linear unbiased and invariant estimators of the location and scale parameters of a location-scale family are developed based on OPOJSS. It is shown that, despite the presence or absence of ranking errors, the proposed estimators with OPOJSS are uniformly better than the existing estimators with simple random sampling (SRS), ranked set sampling (RSS), ordered RSS (ORSS) and partially ordered judgment subset sampling (POJSS). Moreover, we also derive the best linear unbiased estimators (BLUEs) of the unknown parameters of the simple linear regression model with replicated observations using POJSS and OPOJSS. It is found that the BLUEs with OPOJSS are more precise than the BLUEs based on SRS, RSS, ORSS and POJSS.  相似文献   

2.
Ranked set sampling is a sampling design that allows the experimenter to span the full range values in the population and it can be used widely in industrial, environmental and ecological studies. In this paper, we consider the information content of ranked set sampling in terms of extropy measure. It is shown that the ranked set sampling performs better than its simple random sample counterpart of the same size. Monotone properties and stochastic orders are investigated. Sharp bounds on the extropy of RSS data based on the projection method in the non-parametric set-up as well as Steffensen inequalities in the parametric context are established. The extropy measure can also be used as a discrimination tool between RSS and SRS data.  相似文献   

3.
The main focus of agricultural, ecological and environmental studies is to develop well designed, cost-effective and efficient sampling designs. Ranked set sampling (RSS) is one method that leads to accomplish such objectives by incorporating expert knowledge to its advantage. In this paper, we propose an efficient sampling scheme, named mixed RSS (MxRSS), for estimation of the population mean and median. The MxRSS scheme is a suitable mixture of both simple random sampling (SRS) and RSS schemes. The MxRSS scheme provides an unbiased estimator of the population mean, and its variance is always less than the variance of sample mean based on SRS. For both symmetric and asymmetric populations, the mean and median estimators based on SRS, partial RSS (PRSS) and MxRSS schemes are compared. It turns out that the mean and median estimates under MxRSS scheme are more precise than those based on SRS scheme. Moreover, when estimating the mean of symmetric and some asymmetric populations, the mean estimates under MxRSS scheme are found to be more efficient than the mean estimates with PRSS scheme. An application to real data is also provided to illustrate the implementation of the proposed sampling scheme.  相似文献   

4.
When measuring units are expensive or time consuming, while ranking them is relatively easy and inexpensive, it is known that ranked set sampling (RSS) is preferable to simple random sampling (SRS). Many authors have suggested several extensions of RSS. As a variation, Al-Saleh and Al-Kadiri [Double ranked set sampling, Statist. Probab. Lett. 48 (2000), pp. 205–212] introduced double ranked set sampling (DRSS) and it was extended by Al-Saleh and Al-Omari [Multistage ranked set sampling, J. Statist. Plann. Inference 102 (2002), pp. 273–286] to multistage ranked set sampling (MSRSS). The entropy of a random variable (r.v.) is a measure of its uncertainty. It is a measure of the amount of information required on the average to determine the value of a (discrete) r.v.. In this work, we discuss entropy estimation in RSS design and aforementioned extensions and compare the results with those in SRS design in terms of bias and root mean square error (RMSE). Motivated by the above observed efficiency, we continue to investigate entropy-based goodness-of-fit test for the inverse Gaussian distribution using RSS. Critical values for some sample sizes determined by means of Monte Carlo simulations are presented for each design. A Monte Carlo power analysis is performed under various alternative hypotheses in order to compare the proposed testing procedure with the existing methods. The results indicate that tests based on RSS and its extensions are superior alternatives to the entropy test based on SRS.  相似文献   

5.
The estimation of the means of the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) is considered. The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered. The estimators obtained are compared to their counterparts based on simple random sampling (SRS). It appears that the suggested estimators are more efficient. Also, MERSS with concomitant variable is easier to use in practice than the usual ranked set sampling (RSS) with concomitant variable. The issue of robustness of the procedure is addressed. Real trees data set is used for illustration.  相似文献   

6.
It is well-known that when ranked set sampling (RSS) scheme is employed to estimate the mean of a population, it is more efficient than simple random sampling (SRS) with the same sample size. One can use a RSS analog of SRS regression estimator to estimate the population mean of Y using its concomitant variable X when they are linearly related. Unfortunately, the variance of this estimate cannot be evaluated unless the distribution of X is known. We investigate the use of resampling methods to establish confidence intervals for the regression estimation of the population mean. Simulation studies show that the proposed methods perform well in a variety of situations when the assumption of linearity holds, and decently well under mild non-linearity.  相似文献   

7.
Selected Ranked Set Sampling   总被引:1,自引:0,他引:1  
This paper proposes a sampling procedure called selected ranked set sampling (SRSS), in which only selected observations from a ranked set sample (RSS) are measured. This paper describes the optimal linear estimation of location and scale parameters based on SRSS, and for some distributions it presents the required tables for optimal selections. For these distributions, the optimal SRSS estimators are compared with the other popular simple random sample (SRS) and RSS estimators. In every situation the estimators based on SRSS are found advantageous at least in some respect, compared to those obtained from SRS or RSS. The SRSS method with errors in ranking is also described. The relative precision of the estimator of the population mean is investigated for different degrees of correlations between the actual and erroneous ranking. The paper reports the minimum value of the correlation coefficient between the actual and the erroneous ranking required for achieving better precision with respect to the usual SRS estimator and with respect to the RSS estimator.  相似文献   

8.
9.
Ranked set sampling (RSS) was first proposed by McIntyre [1952. A method for unbiased selective sampling, using ranked sets. Australian J. Agricultural Res. 3, 385–390] as an effective way to estimate the unknown population mean. Chuiv and Sinha [1998. On some aspects of ranked set sampling in parametric estimation. In: Balakrishnan, N., Rao, C.R. (Eds.), Handbook of Statistics, vol. 17. Elsevier, Amsterdam, pp. 337–377] and Chen et al. [2004. Ranked Set Sampling—Theory and Application. Lecture Notes in Statistics, vol. 176. Springer, New York] have provided excellent surveys of RSS and various inferential results based on RSS. In this paper, we use the idea of order statistics from independent and non-identically distributed (INID) random variables to propose ordered ranked set sampling (ORSS) and then develop optimal linear inference based on ORSS. We determine the best linear unbiased estimators based on ORSS (BLUE-ORSS) and show that they are more efficient than BLUE-RSS for the two-parameter exponential, normal and logistic distributions. Although this is not the case for the one-parameter exponential distribution, the relative efficiency of the BLUE-ORSS (to BLUE-RSS) is very close to 1. Furthermore, we compare both BLUE-ORSS and BLUE-RSS with the BLUE based on order statistics from a simple random sample (BLUE-OS). We show that BLUE-ORSS is uniformly better than BLUE-OS, while BLUE-RSS is not as efficient as BLUE-OS for small sample sizes (n<5n<5).  相似文献   

10.
A double L ranked set sampling (DLRSS) method is suggested for estimating the population mean. The DLRSS is compared with the simple random sampling (SRS), ranked set sampling (RSS) and L ranked set sampling (LRSS) methods based on the same number of measured units. The conditions for which the suggested estimator performs better than the other estimators are derived. It is found that, the suggested DLRSS estimator is an unbiased of the population mean, and is more efficient than its counterparts using SRS, RSS, and LRSS methods. Real data sets are used for illustration.  相似文献   

11.
In this paper, double robust extreme ranked set sampling (DRERSS) and its properties for estimating the population mean are considered. It turns out that, when the underlying distribution is symmetric, DRERSS gives unbiased estimators of the population mean. Also, it is found that DRERSS is more efficient than the simple random sampling (SRS), ranked set sampling (RSS), and extreme ranked set sampling (ERSS) methods. For asymmetric distributions considered in this study, the DRERSS has a small bias and it is more efficient than SRS, RSS, and ERSS. A real data set is used to illustrate the DRERSS method.  相似文献   

12.
As a well-known method for selecting representative samples of populations, ranked set sampling (RSS) has been considered increasingly in recent years. This (RSS) method has proved to be more efficient than the usual simple random sampling (SRS) for estimating most of the population parameters. In order to have a more efficient estimate of the population mean, a new sampling scheme called as robust extreme double ranked set sampling (REDRSS) is introduced and investigated in this paper. A simulation study shows that using REDRSS scheme gives more efficient estimates of population mean with smaller variance than the usual SRS, RSS and most other sampling schemes based on RSS estimators in non-uniform (symmetric or non-symmetric) distributions.  相似文献   

13.
Different quality control charts for the sample mean are developed using ranked set sampling (RSS), and two of its modifications, namely median ranked set sampling (MRSS) and extreme ranked set sampling (ERSS). These new charts are compared to the usual control charts based on simple random sampling (SRS) data. The charts based on RSS or one of its modifications are shown to have smaller average run length (ARL) than the classical chart when there is a sustained shift in the process mean. The MRSS and ERSS methods are compared with RSS and SRS data, it turns out that MRSS dominates all other methods in terms of the out-of-control ARL performance. Real data are collected using the RSS, MRSS, and ERSS in cases of perfect and imperfect ranking. These data sets are used to construct the corresponding control charts. These charts are compared to usual SRS chart. Throughout this study we are assuming that the underlying distribution is normal. A check of the normality for our example data set indicated that the normality assumption is reasonable.  相似文献   

14.
When quantification of all sampling units is expensive but a set of units can be ranked, without formal measurement, ranked set sampling (RSS) is a cost-efficient alternate to simple random sampling (SRS). In this paper, we study the Kaplan–Meier estimator of survival probability based on RSS under random censoring time setup, and propose nonparametric estimators of the population mean. We present a simulation study to compare the performance of the suggested estimators. It turns out that RSS design can yield a substantial improvement in efficiency over the SRS design. Additionally, we apply the proposed methods to a real data set from an environmental study.  相似文献   

15.
Abstract

In environmental monitoring and assessment, the main focus is to achieve observational economy and to collect data with unbiased, efficient and cost-effective sampling methods. Ranked set sampling (RSS) is one traditional method that is mostly used for accomplishing observational economy. In this article, we propose an unbiased sampling scheme, named paired double RSS (PDRSS) for estimating the population mean. We study the performance of the mean estimators under PDRSS based on perfect and imperfect rankings. It is shown that, for perfect ranking, the variance of the mean estimator under PDRSS is always less than the variance of mean estimator based on simple random sampling, paired RSS and RSS. The mean estimators under RSS, median RSS, PDRSS, and double RSS are also compared with the regression estimator of population mean based on SRS. The procedure is also illustrated with a case study using a real data set.  相似文献   

16.
We study the use of ranked set sampling (RSS) with binary outcomes in cluster-randomized designs (CRDs), where a generalized linear mixed model (GLMM) is used to model the hierarchical data structure involved. Under the GLMM-based framework, we propose three different approaches to estimate the treatment effect, including the nonparametric (NP), maximum likelihood (ML) and pseudo likelihood (PL) estimators. We investigate their asymptotic properties and examine their finite-sample performance via simulation. Based on these three RSS estimators, we further develop procedures for testing the existence of the treatment effect. We examine the power and size of our proposed RSS tests and compare them with existing tests based on simple random sampling (SRS). All the proposed RSS estimation and test methods are illustrated with two data examples, one for rare events and the other for non-extreme events. Throughout our investigations, we also consider the possible effect of imperfect ranking. Among the proposed methods, we provide recommendations on whether to use RSS rather than SRS with binary outcomes in CRDs and, if yes, when to use which RSS method. The Canadian Journal of Statistics 48: 342–365; 2020 © 2019 Statistical Society of Canada  相似文献   

17.
In this article, we consider the ranked set sampling (RSS) and investigate seven tests for normality under RSS. Each test is described and then power of each test is obtained by Monte Carlo simulations under various alternatives. Finally, the powers of the tests based on RSS are compared with the powers of the tests based on the simple random sampling and the results are discussed.  相似文献   

18.
Recently, a hybrid ranked set sampling (HRSS) scheme has been proposed in the literature. The HRSS scheme encompasses several existing ranked set sampling (RSS) schemes, and it is a cost-effective alternative to the classical RSS and double RSS schemes. In this paper, we propose an improved estimator for estimating the cumulative distribution function (CDF) using HRSS. It is shown, both theoretically and numerically, that the CDF estimator under HRSS scheme is unbiased and its variance is always less than the variance of the CDF estimator with simple random sampling (SRS). An unbiased estimator of the variance of CDF estimator using HRSS is also derived. Using Monte Carlo simulations, we also study the performances of the proposed and existing CDF estimators under both perfect and imperfect rankings. It turns out that the proposed CDF estimator is by far a superior alternative to the existing CDF estimators with SRS, RSS and L-RSS schemes. For a practical application, a real data set is considered on the bilirubin level of babies in neonatal intensive care.  相似文献   

19.
Abstract

Partially rank-ordered set sampling (PROSS) is a generalization of ranked-set sampling (RSS) in which the ranker is not required to give a full ranking in each set. In this paper, we compare the efficiency of the sample mean as an estimator of the population mean under PROSS, RSS, and simple random sampling (SRS). We find that for fixed set size and total sample size, the efficiency of PROSS falls between that of SRS and that of RSS. We also develop a method for finding a sharp upper bound on the efficiency of PROSS relative to SRS for a particular design.  相似文献   

20.
We develop an omnibus two-sample test for ranked-set sampling (RSS) data. The test statistic is the conditional probability of seeing the observed sequence of ranks in the combined sample, given the observed sequences within the separate samples. We compare the test to existing tests under perfect rankings, finding that it can outperform existing tests in terms of power, particularly when the set size is large. The test does not maintain its level under imperfect rankings. However, one can create a permutation version of the test that is comparable in power to the basic test under perfect rankings and also maintains its level under imperfect rankings. Both tests extend naturally to judgment post-stratification, unbalanced RSS, and even RSS with multiple set sizes. Interestingly, the tests have no simple random sampling analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号