共查询到20条相似文献,搜索用时 0 毫秒
1.
Generalized linear mixed models provide a unified framework for treatment of exponential family regression models, overdispersed data and longitudinal studies. These problems typically involve the presence of random effects and this paper presents a new methodology for making Bayesian inference about them. The approach is simulation-based and involves the use of Markov chain Monte Carlo techniques. The usual iterative weighted least squares algorithm is extended to include a sampling step based on the Metropolis–Hastings algorithm thus providing a unified iterative scheme. Non-normal prior distributions for the regression coefficients and for the random effects distribution are considered. Random effect structures with nesting required by longitudinal studies are also considered. Particular interests concern the significance of regression coefficients and assessment of the form of the random effects. Extensions to unknown scale parameters, unknown link functions, survival and frailty models are outlined. 相似文献
2.
This paper discusses a Bayesian approach to nonparametric regression initially proposed by Smith and Kohn (1996. Journal of Econometrics 75: 317–344). In this approach the regression function is represented as a linear combination of basis terms. The basis terms can be univariate or multivariate functions and can include polynomials, natural splines and radial basis functions. A Bayesian hierarchical model is used such that the coefficient of each basis term can be zero with positive prior probability. The presence of basis terms in the model is determined by latent indicator variables. The posterior mean is estimated by Markov chain Monte Carlo simulation because it is computationally intractable to compute the posterior mean analytically unless a small number of basis terms is used. The present article updates the work of Smith and Kohn (1996. Journal of Econometrics 75: 317–344) to take account of work by us and others over the last three years. A careful discussion is given to all aspects of the model specification, function estimation and the use of sampling schemes. In particular, new sampling schemes are introduced to carry out the variable selection methodology. 相似文献
3.
Andriy Norets 《Econometric Reviews》2013,32(1):84-106
I propose a method for inference in dynamic discrete choice models (DDCM) that utilizes Markov chain Monte Carlo (MCMC) and artificial neural networks (ANNs). MCMC is intended to handle high-dimensional integration in the likelihood function of richly specified DDCMs. ANNs approximate the dynamic-program (DP) solution as a function of the parameters and state variables prior to estimation to avoid having to solve the DP on each iteration. Potential applications of the proposed methodology include inference in DDCMs with random coefficients, serially correlated unobservables, and dependence across individual observations. The article discusses MCMC estimation of DDCMs, provides relevant background on ANNs, and derives a theoretical justification for the method. Experiments suggest this to be a promising approach. 相似文献
4.
The fused lasso penalizes a loss function by the L1 norm for both the regression coefficients and their successive differences to encourage sparsity of both. In this paper, we propose a Bayesian generalized fused lasso modeling based on a normal-exponential-gamma (NEG) prior distribution. The NEG prior is assumed into the difference of successive regression coefficients. The proposed method enables us to construct a more versatile sparse model than the ordinary fused lasso using a flexible regularization term. Simulation studies and real data analyses show that the proposed method has superior performance to the ordinary fused lasso. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(4):833-849
Bayesian analysis often requires the researcher to employ Markov Chain Monte Carlo (MCMC) techniques to draw samples from a posterior distribution which in turn is used to make inferences. Currently, several approaches to determine convergence of the chain as well as sensitivities of the resulting inferences have been developed. This work develops a Hellinger distance approach to MCMC diagnostics. An approximation to the Hellinger distance between two distributions f and g based on sampling is introduced. This approximation is studied via simulation to determine the accuracy. A criterion for using this Hellinger distance for determining chain convergence is proposed as well as a criterion for sensitivity studies. These criteria are illustrated using a dataset concerning the Anguilla australis, an eel native to New Zealand. 相似文献
6.
The article considers a Gaussian model with the mean and the variance modeled flexibly as functions of the independent variables. The estimation is carried out using a Bayesian approach that allows the identification of significant variables in the variance function, as well as averaging over all possible models in both the mean and the variance functions. The computation is carried out by a simulation method that is carefully constructed to ensure that it converges quickly and produces iterates from the posterior distribution that have low correlation. Real and simulated examples demonstrate that the proposed method works well. The method in this paper is important because (a) it produces more realistic prediction intervals than nonparametric regression estimators that assume a constant variance; (b) variable selection identifies the variables in the variance function that are important; (c) variable selection and model averaging produce more efficient prediction intervals than those obtained by regular nonparametric regression. 相似文献
7.
Inge S. Helland 《Scandinavian Journal of Statistics》2000,27(1):1-20
We look at prediction in regression models under squared loss for the random x case with many explanatory variables. Model reduction is done by conditioning upon only a small number of linear combinations of the original variables. The corresponding reduced model will then essentially be the population model for the chemometricians' partial least squares algorithm. Estimation of the selection matrix under this model is briefly discussed, and analoguous results for the case with multivariate response are formulated. Finally, it is shown that an assumption of multinormality may be weakened to assuming elliptically symmetric distribution, and that some of the results are valid without any distributional assumption at all. 相似文献
8.
C. P. Robert T. Rydén & D. M. Titterington 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2000,62(1):57-75
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism. 相似文献
9.
Nur Aainaa Rozliman Rossita Muhamad Yunus 《Journal of Statistical Computation and Simulation》2018,88(2):203-220
In most practical applications, the quality of count data is often compromised due to errors-in-variables (EIVs). In this paper, we apply Bayesian approach to reduce bias in estimating the parameters of count data regression models that have mismeasured independent variables. Furthermore, the exposure model is misspecified with a flexible distribution, hence our approach remains robust against any departures from normality in its true underlying exposure distribution. The proposed method is also useful in realistic situations as the variance of EIVs is estimated instead of assumed as known, in contrast with other methods of correcting bias especially in count data EIVs regression models. We conduct simulation studies on synthetic data sets using Markov chain Monte Carlo simulation techniques to investigate the performance of our approach. Our findings show that the flexible Bayesian approach is able to estimate the values of the true regression parameters consistently and accurately. 相似文献
10.
David Hirst Sondre Aanes Geir Storvik Ragnar Bang Huseby Ingunn Fride Tvete 《Journal of the Royal Statistical Society. Series C, Applied statistics》2004,53(1):1-14
Summary. The paper develops a Bayesian hierarchical model for estimating the catch at age of cod landed in Norway. The model includes covariate effects such as season and gear, and can also account for the within-boat correlation. The hierarchical structure allows us to account properly for the uncertainty in the estimates. 相似文献
11.
《Journal of Statistical Computation and Simulation》2012,82(2):394-413
Mixture models are flexible tools in density estimation and classification problems. Bayesian estimation of such models typically relies on sampling from the posterior distribution using Markov chain Monte Carlo. Label switching arises because the posterior is invariant to permutations of the component parameters. Methods for dealing with label switching have been studied fairly extensively in the literature, with the most popular approaches being those based on loss functions. However, many of these algorithms turn out to be too slow in practice, and can be infeasible as the size and/or dimension of the data grow. We propose a new, computationally efficient algorithm based on a loss function interpretation, and show that it can scale up well in large data set scenarios. Then, we review earlier solutions which can scale up well for large data set, and compare their performances on simulated and real data sets. We conclude with some discussions and recommendations of all the methods studied. 相似文献
12.
We develop a Bayesian approach for parsimoniously estimating the correlation structure of the errors in a multivariate stochastic volatility model. Since the number of parameters in the joint correlation matrix of the return and volatility errors is potentially very large, we impose a prior that allows the off-diagonal elements of the inverse of the correlation matrix to be identically zero. The model is estimated using a Markov chain simulation method that samples from the posterior distribution of the volatilities and parameters. We illustrate the approach using both simulated and real examples. In the real examples, the method is applied to equities at three levels of aggregation: returns for firms within the same industry, returns for different industries, and returns aggregated at the index level. We find pronounced correlation effects only at the highest level of aggregation. 相似文献
13.
We develop a Bayesian approach for parsimoniously estimating the correlation structure of the errors in a multivariate stochastic volatility model. Since the number of parameters in the joint correlation matrix of the return and volatility errors is potentially very large, we impose a prior that allows the off-diagonal elements of the inverse of the correlation matrix to be identically zero. The model is estimated using a Markov chain simulation method that samples from the posterior distribution of the volatilities and parameters. We illustrate the approach using both simulated and real examples. In the real examples, the method is applied to equities at three levels of aggregation: returns for firms within the same industry, returns for different industries, and returns aggregated at the index level. We find pronounced correlation effects only at the highest level of aggregation. 相似文献
14.
S. M. Tam 《Australian & New Zealand Journal of Statistics》1986,28(3):345-353
Several results relating to the optimal prediction of regression coefficients and random variables under a general linear model with stochastic coefficients are presented. These results are then applied to the analysis of repeated sample surveys over time. In particular, if the finite population can be modelled by a superpopulation model, a fully efficient method for the analysis of repeated surveys is proposed. 相似文献
15.
Thomas A. Dean Sumeetpal S. Singh Ajay Jasra Gareth W. Peters 《Scandinavian Journal of Statistics》2014,41(4):970-987
Approximate Bayesian computation (ABC) is a popular technique for analysing data for complex models where the likelihood function is intractable. It involves using simulation from the model to approximate the likelihood, with this approximate likelihood then being used to construct an approximate posterior. In this paper, we consider methods that estimate the parameters by maximizing the approximate likelihood used in ABC. We give a theoretical analysis of the asymptotic properties of the resulting estimator. In particular, we derive results analogous to those of consistency and asymptotic normality for standard maximum likelihood estimation. We also discuss how sequential Monte Carlo methods provide a natural method for implementing our likelihood‐based ABC procedures. 相似文献
16.
Brian J. Smith Mary Kathryn Cowles 《Journal of the Royal Statistical Society. Series C, Applied statistics》2007,56(3):313-326
Summary. Because exposure to radon gas in buildings is a likely risk factor for lung cancer, estimation of residential radon levels is an important public health endeavour. Radon originates from uranium, and therefore data on the geographical distribution of uranium in the Earth's surface may inform about radon levels. We fit a Bayesian geostatistical model that appropriately combines data on uranium with measurements of indoor home radon in the state of Iowa, thereby obtaining more accurate and precise estimation of the geographic distribution of average residential radon levels than would be possible by using radon data alone. 相似文献
17.
Taeyoung Park Robert T. Krafty Alvaro I. Sánchez 《Journal of applied statistics》2012,39(10):2285-2298
A Poisson regression model with an offset assumes a constant baseline rate after accounting for measured covariates, which may lead to biased estimates of coefficients in an inhomogeneous Poisson process. To correctly estimate the effect of time-dependent covariates, we propose a Poisson change-point regression model with an offset that allows a time-varying baseline rate. When the non-constant pattern of a log baseline rate is modeled with a non-parametric step function, the resulting semi-parametric model involves a model component of varying dimensions and thus requires a sophisticated varying-dimensional inference to obtain the correct estimates of model parameters of a fixed dimension. To fit the proposed varying-dimensional model, we devise a state-of-the-art Markov chain Monte Carlo-type algorithm based on partial collapse. The proposed model and methods are used to investigate the association between the daily homicide rates in Cali, Colombia, and the policies that restrict the hours during which the legal sale of alcoholic beverages is permitted. While simultaneously identifying the latent changes in the baseline homicide rate which correspond to the incidence of sociopolitical events, we explore the effect of policies governing the sale of alcohol on homicide rates and seek a policy that balances the economic and cultural dependencies on alcohol sales to the health of the public. 相似文献
18.
Ulrich Menzefricke 《统计学通讯:模拟与计算》2013,42(4):1089-1108
We formulate a hierarchical version of the Gaussian Process model. In particular, we assume there to be data on several units randomly drawn from the same population. For each unit, several responses are available that arise from a Gaussian Process model. The parameters characterizing the Gaussian Process model for the units are modeled to arise from normal or gamma distributions. Results for two simulations are given that compare the performance of the hierarchical and non-hierarchical models. 相似文献
19.
Bruno Sansó & Lelys Guenni 《Journal of the Royal Statistical Society. Series C, Applied statistics》1999,48(3):345-362
We consider a set of data from 80 stations in the Venezuelan state of Guárico consisting of accumulated monthly rainfall in a time span of 16 years. The problem of modelling rainfall accumulated over fixed periods of time and recorded at meteorological stations at different sites is studied by using a model based on the assumption that the data follow a truncated and transformed multivariate normal distribution. The spatial correlation is modelled by using an exponentially decreasing correlation function and an interpolating surface for the means. Missing data and dry periods are handled within a Markov chain Monte Carlo framework using latent variables. We estimate the amount of rainfall as well as the probability of a dry period by using the predictive density of the data. We considered a model based on a full second-degree polynomial over the spatial co-ordinates as well as the first two Fourier harmonics to describe the variability during the year. Predictive inferences on the data show very realistic results, capturing the typical rainfall variability in time and space for that region. Important extensions of the model are also discussed. 相似文献
20.
S. P. Brooks 《Statistics and Computing》1998,8(3):267-274
Yu (1995) provides a novel convergence diagnostic for Markov chain Monte Carlo (MCMC) which provides a qualitative measure of mixing for Markov chains via a cusum path plot for univariate parameters of interest. The method is based upon the output of a single replication of an MCMC sampler and is therefore widely applicable and simple to use. One criticism of the method is that it is subjective in its interpretation, since it is based upon a graphical comparison of two cusum path plots. In this paper, we develop a quantitative measure of smoothness which we can associate with any given cusum path, and show how we can use this measure to obtain a quantitative measure of mixing. In particular, we derive the large sample distribution of this smoothness measure, so that objective inference is possible. In addition, we show how this quantitative measure may also be used to provide an estimate of the burn-in length for any given sampler. We discuss the utility of this quantitative approach, and highlight a problem which may occur if the chain is able to remain in any one state for some period of time. We provide a more general implementation of the method to overcome the problem in such cases. 相似文献