首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Abstract.  The generalized autoregressive conditional heteroscedastic (GARCH) model has been popular in the analysis of financial time series data with high volatility. Conventionally, the parameter estimation in GARCH models has been performed based on the Gaussian quasi-maximum likelihood. However, when the innovation terms have either heavy-tailed or skewed distributions, the quasi-maximum likelihood estimator (QMLE) does not function well. In order to remedy this defect, we propose the normal mixture QMLE (NM-QMLE), which is obtained from the normal mixture quasi-likelihood, and demonstrate that the NM-QMLE is consistent and asymptotically normal. Finally, we present simulation results and a real data analysis in order to illustrate our findings.  相似文献   

2.
We advocate the use of an Indirect Inference method to estimate the parameter of a COGARCH(1,1) process for equally spaced observations. This requires that the true model can be simulated and a reasonable estimation method for an approximate auxiliary model. We follow previous approaches and use linear projections leading to an auxiliary autoregressive model for the squared COGARCH returns. The asymptotic theory of the Indirect Inference estimator relies on a uniform strong law of large numbers and asymptotic normality of the parameter estimates of the auxiliary model, which require continuity and differentiability of the COGARCH process with respect to its parameter and which we prove via Kolmogorov's continuity criterion. This leads to consistent and asymptotically normal Indirect Inference estimates under moment conditions on the driving Lévy process. A simulation study shows that the method yields a substantial finite sample bias reduction compared with previous estimators.  相似文献   

3.
Yingfu Xie 《Statistics》2013,47(2):153-165
The regime-switching GARCH (generalized autoregressive conditionally heteroscedastic) model incorporates the idea of Markov switching into the more restrictive GARCH model, which significantly extends the GARCH model. However, the statistical inference for such an extended model is rather difficult because observations at any time point then depend on the whole regime path and the likelihood becomes intractable quickly as the length of observations increases. In this paper, by transforming it into an infinite order ARCH model, we obtain the possibility of writing a likelihood which can be handled directly and the consistency of the maximum likelihood estimators is proved. Simulation studies to illustrate the consistency and asymptotic normality of the estimators (for both Gaussian and non-Gaussian innovations) and a model specification problem are presented.  相似文献   

4.
Informative identification of the within‐subject correlation is essential in longitudinal studies in order to forecast the trajectory of each subject and improve the validity of inferences. In this paper, we fit this correlation structure by employing a time adaptive autoregressive error process. Such a process can automatically accommodate irregular and possibly subject‐specific observations. Based on the fitted correlation structure, we propose an efficient two‐stage estimator of the unknown coefficient functions by using a local polynomial approximation. This procedure does not involve within‐subject covariance matrices and hence circumvents the instability of calculating their inverses. The asymptotic normality of resulting estimators is established. Numerical experiments were conducted to check the finite sample performance of our method and an example of an application involving a set of medical data is also illustrated.  相似文献   

5.
Abstract. We consider N independent stochastic processes (X i (t), t ∈ [0,T i ]), i=1,…, N, defined by a stochastic differential equation with drift term depending on a random variable φ i . The distribution of the random effect φ i depends on unknown parameters which are to be estimated from the continuous observation of the processes Xi. We give the expression of the exact likelihood. When the drift term depends linearly on the random effect φ i and φ i has Gaussian distribution, an explicit formula for the likelihood is obtained. We prove that the maximum likelihood estimator is consistent and asymptotically Gaussian, when T i =T for all i and N tends to infinity. We discuss the case of discrete observations. Estimators are computed on simulated data for several models and show good performances even when the length time interval of observations is not very large.  相似文献   

6.
Abstract. In this article, we study the quantile regression estimator for GARCH models. We formulate the quantile regression problem by a reparametrization method and verify that the obtained quantile regression estimator is strongly consistent and asymptotically normal under certain regularity conditions. We also present our simulation results and a real data analysis for illustration.  相似文献   

7.
In this paper, we propose a new generalized autoregressive conditional heteroskedastic (GARCH) model using infinite normal scale-mixtures which can suitably avoid order selection problems in the application of finite normal scale-mixtures. We discuss its theoretical properties and develop a two-stage algorithm for the maximum likelihood estimator to estimate the mixing distribution non-parametric maximum likelihood estimator (NPMLE) as well as GARCH parameters (two-stage MLE). For the estimation of a mixing distribution, we employ a fast computational algorithm proposed by Wang [On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution. J R Stat Soc Ser B. 2007;69:185–198] under the gradient characterization of the non-parametric mixture likelihood. The GARCH parameters are then estimated either using the expectation-mazimization algorithm or general optimization scheme. In addition, we propose a new forecasting algorithm of value-at-risk (VaR) using the two-stage MLE and the NPMLE. Through a simulation study and real data analysis, we compare the performance of the two-stage MLE with the existing ones including quasi-maximum likelihood estimator based on the standard normal density and the finite normal mixture quasi maximum estimated-likelihood estimator (cf. Lee S, Lee T. Inference for Box–Cox transformed threshold GARCH models with nuisance parameters. Scand J Stat. 2012;39:568–589) in terms of the relative efficiency and accuracy of VaR forecasting.  相似文献   

8.
I introduce the notion of continuous invertibility on a compact set for volatility models driven by a stochastic recurrence equation. I prove strong consistency of the quasi‐maximum likelihood estimator (QMLE) when the quasi‐likelihood criterion is maximized on a continuously invertible domain. This approach yields, for the first time, the asymptotic normality of the QMLE for the exponential general autoregressive conditional heteroskedastic (EGARCH(1,1)) model under explicit but non‐verifiable conditions. In practice, I propose to stabilize the QMLE by constraining the optimization procedure to an empirical continuously invertible domain. The new method, called stable QMLE, is asymptotically normal when the observations follow an invertible EGARCH(1,1) model.  相似文献   

9.
Abstract.  We state and prove a limit theorem for estimators of a general, possibly infinite dimensional parameter based on unbiased estimating equations containing estimated nuisance parameters. The theorem corrects a gap in the proof of one of the assertions of our paper 'Weighted likelihood for semiparametric models and two-phase stratified samples, with application to Cox regression' [ Scand. J. Statist . 34 (2007) 86–102].  相似文献   

10.
We consider the smoothed maximum likelihood estimator and the smoothed Grenander‐type estimator for a monotone baseline hazard rate λ 0 in the Cox model. We analyze their asymptotic behaviour and show that they are asymptotically normal at rate n m /(2m +1), when λ 0 is m ≥2 times continuously differentiable, and that both estimators are asymptotically equivalent. Finally, we present numerical results on pointwise confidence intervals that illustrate the comparable behaviour of the two methods.  相似文献   

11.
The authors provide a rigorous large sample theory for linear models whose response variable has been subjected to the Box‐Cox transformation. They provide a continuous asymptotic approximation to the distribution of estimators of natural parameters of the model. They show, in particular, that the maximum likelihood estimator of the ratio of slope to residual standard deviation is consistent and relatively stable. The authors further show the importance for inference of normality of the errors and give tests for normality based on the estimated residuals. For non‐normal errors, they give adjustments to the log‐likelihood and to asymptotic standard errors.  相似文献   

12.
This paper deals with a longitudinal semi‐parametric regression model in a generalised linear model setup for repeated count data collected from a large number of independent individuals. To accommodate the longitudinal correlations, we consider a dynamic model for repeated counts which has decaying auto‐correlations as the time lag increases between the repeated responses. The semi‐parametric regression function involved in the model contains a specified regression function in some suitable time‐dependent covariates and a non‐parametric function in some other time‐dependent covariates. As far as the inference is concerned, because the non‐parametric function is of secondary interest, we estimate this function consistently using the independence assumption‐based well‐known quasi‐likelihood approach. Next, the proposed longitudinal correlation structure and the estimate of the non‐parametric function are used to develop a semi‐parametric generalised quasi‐likelihood approach for consistent and efficient estimation of the regression effects in the parametric regression function. The finite sample performance of the proposed estimation approach is examined through an intensive simulation study based on both large and small samples. Both balanced and unbalanced cluster sizes are incorporated in the simulation study. The asymptotic performances of the estimators are given. The estimation methodology is illustrated by reanalysing the well‐known health care utilisation data consisting of counts of yearly visits to a physician by 180 individuals for four years and several important primary and secondary covariates.  相似文献   

13.
Expectiles were introduced by Newey and Powell in 1987 in the context of linear regression models. Recently, Bellini et al. revealed that expectiles can also be seen as reasonable law‐invariant risk measures. In this article, we show that the corresponding statistical functionals are continuous w.r.t. the 1‐weak topology and suitably functionally differentiable. By means of these regularity results, we can derive several properties such as consistency, asymptotic normality, bootstrap consistency and qualitative robustness of the corresponding estimators in nonparametric and parametric statistical models.  相似文献   

14.
15.
Recently Beh and Farver investigated and evaluated three non‐iterative procedures for estimating the linear‐by‐linear parameter of an ordinal log‐linear model. The study demonstrated that these non‐iterative techniques provide estimates that are, for most types of contingency tables, statistically indistinguishable from estimates from Newton's unidimensional algorithm. Here we show how two of these techniques are related using the Box–Cox transformation. We also show that by using this transformation, accurate non‐iterative estimates are achievable even when a contingency table contains sampling zeros.  相似文献   

16.
Abstract. We investigate non‐parametric estimation of a monotone baseline hazard and a decreasing baseline density within the Cox model. Two estimators of a non‐decreasing baseline hazard function are proposed. We derive the non‐parametric maximum likelihood estimator and consider a Grenander type estimator, defined as the left‐hand slope of the greatest convex minorant of the Breslow estimator. We demonstrate that the two estimators are strongly consistent and asymptotically equivalent and derive their common limit distribution at a fixed point. Both estimators of a non‐increasing baseline hazard and their asymptotic properties are obtained in a similar manner. Furthermore, we introduce a Grenander type estimator for a non‐increasing baseline density, defined as the left‐hand slope of the least concave majorant of an estimator of the baseline cumulative distribution function, derived from the Breslow estimator. We show that this estimator is strongly consistent and derive its asymptotic distribution at a fixed point.  相似文献   

17.
We study semiparametric time series models with innovations following a log‐concave distribution. We propose a general maximum likelihood framework that allows us to estimate simultaneously the parameters of the model and the density of the innovations. This framework can be easily adapted to many well‐known models, including autoregressive moving average (ARMA), generalized autoregressive conditionally heteroscedastic (GARCH), and ARMA‐GARCH models. Furthermore, we show that the estimator under our new framework is consistent in both ARMA and ARMA‐GARCH settings. We demonstrate its finite sample performance via a thorough simulation study and apply it to model the daily log‐return of the FTSE 100 index.  相似文献   

18.
This paper is concerned with person parameter estimation in the binary Rasch model. The loss of efficiency of a pseudo, quasi, or composite likelihood approach investigated. By means of a Monte Carlo study, two quasi likelihood estimators are compared to two well-established maximum likelihood approaches, one of which being a weighted likelihood procedure. The results show that the observed values of the root mean squared error are practically equivalent for the compared estimators in the case of a sufficiently large number of items.  相似文献   

19.
We consider the Whittle likelihood estimation of seasonal autoregressive fractionally integrated moving‐average models in the presence of an additional measurement error and show that the spectral maximum Whittle likelihood estimator is asymptotically normal. We illustrate by simulation that ignoring measurement errors may result in incorrect inference. Hence, it is pertinent to test for the presence of measurement errors, which we do by developing a likelihood ratio (LR) test within the framework of Whittle likelihood. We derive the non‐standard asymptotic null distribution of this LR test and the limiting distribution of LR test under a sequence of local alternatives. Because in practice, we do not know the order of the seasonal autoregressive fractionally integrated moving‐average model, we consider three modifications of the LR test that takes model uncertainty into account. We study the finite sample properties of the size and the power of the LR test and its modifications. The efficacy of the proposed approach is illustrated by a real‐life example.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号