首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors study the empirical likelihood method for linear regression models. They show that when missing responses are imputed using least squares predictors, the empirical log‐likelihood ratio is asymptotically a weighted sum of chi‐square variables with unknown weights. They obtain an adjusted empirical log‐likelihood ratio which is asymptotically standard chi‐square and hence can be used to construct confidence regions. They also obtain a bootstrap empirical log‐likelihood ratio and use its distribution to approximate that of the empirical log‐likelihood ratio. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals, and perform better than a normal approximation based method.  相似文献   

2.
Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased conditions from non‐diseased conditions. For a continuous‐scale diagnostic test, a popular summary index of the receiver operating characteristic (ROC) curve is the area under the curve (AUC). However, when our focus is on a certain region of false positive rates, we often use the partial AUC instead. In this paper we have derived the asymptotic normal distribution for the non‐parametric estimator of the partial AUC with an explicit variance formula. The empirical likelihood (EL) ratio for the partial AUC is defined and it is shown that its limiting distribution is a scaled chi‐square distribution. Hybrid bootstrap and EL confidence intervals for the partial AUC are proposed by using the newly developed EL theory. We also conduct extensive simulation studies to compare the relative performance of the proposed intervals and existing intervals for the partial AUC. A real example is used to illustrate the application of the recommended intervals. The Canadian Journal of Statistics 39: 17–33; 2011 © 2011 Statistical Society of Canada  相似文献   

3.
Receiver operating characteristic (ROC) curves can be used to assess the accuracy of tests measured on ordinal or continuous scales. The most commonly used measure for the overall diagnostic accuracy of diagnostic tests is the area under the ROC curve (AUC). A gold standard (GS) test on the true disease status is required to estimate the AUC. However, a GS test may be too expensive or infeasible. In many medical researches, the true disease status of the subjects may remain unknown. Under the normality assumption on test results from each disease group of subjects, we propose a heuristic method of estimating confidence intervals for the difference in paired AUCs of two diagnostic tests in the absence of a GS reference. This heuristic method is a three-stage method by combining the expectation-maximization (EM) algorithm, bootstrap method, and an estimation based on asymptotic generalized pivotal quantities (GPQs) to construct generalized confidence intervals for the difference in paired AUCs in the absence of a GS. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities and expected interval lengths. The numerical example using a published dataset illustrates the proposed method.  相似文献   

4.
Comparison of accuracy between two diagnostic tests can be implemented by investigating the difference in paired Youden indices. However, few literature articles have discussed the inferences for the difference in paired Youden indices. In this paper, we propose an exact confidence interval for the difference in paired Youden indices based on the generalized pivotal quantities. For comparison, the maximum likelihood estimate‐based interval and a bootstrap‐based interval are also included in the study for the difference in paired Youden indices. Abundant simulation studies are conducted to compare the relative performance of these intervals by evaluating the coverage probability and average interval length. Our simulation results demonstrate that the exact confidence interval outperforms the other two intervals even with small sample size when the underlying distributions are normal. A real application is also used to illustrate the proposed intervals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract. In this article, a naive empirical likelihood ratio is constructed for a non‐parametric regression model with clustered data, by combining the empirical likelihood method and local polynomial fitting. The maximum empirical likelihood estimates for the regression functions and their derivatives are obtained. The asymptotic distributions for the proposed ratio and estimators are established. A bias‐corrected empirical likelihood approach to inference for the parameters of interest is developed, and the residual‐adjusted empirical log‐likelihood ratio is shown to be asymptotically chi‐squared. These results can be used to construct a class of approximate pointwise confidence intervals and simultaneous bands for the regression functions and their derivatives. Owing to our bias correction for the empirical likelihood ratio, the accuracy of the obtained confidence region is not only improved, but also a data‐driven algorithm can be used for selecting an optimal bandwidth to estimate the regression functions and their derivatives. A simulation study is conducted to compare the empirical likelihood method with the normal approximation‐based method in terms of coverage accuracies and average widths of the confidence intervals/bands. An application of this method is illustrated using a real data set.  相似文献   

6.
The Gini index and its generalizations have been used extensively for measuring inequality and poverty in the social sciences. Recently, interval estimation based on nonparametric statistics has been proposed in the literature, for example the naive bootstrap method, the iterated bootstrap method and the bootstrap method via a pivotal statistic. In this paper, we propose empirical likelihood methods to construct confidence intervals for the Gini index or the difference of two Gini indices. Simulation studies show that the proposed empirical likelihood method performs slightly worse than the bootstrap method based on a pivotal statistic in terms of coverage accuracy, but it requires less computation. However, the bootstrap calibration of the empirical likelihood method performs better than the bootstrap method based on a pivotal statistic.  相似文献   

7.
Recently, an empirical best linear unbiased predictor is widely used as a practical approach to small area inference. It is also of interest to construct empirical prediction intervals. However, we do not know which method should be used from among the several existing prediction intervals. In this article, we first obtain an empirical prediction interval by using the residual maximum likelihood method for estimating unknown model variance parameters. Then we compare the later with other intervals with the residual maximum likelihood method. Additionally, some different parametric bootstrap methods for constructing empirical prediction intervals are also compared in a simulation study.  相似文献   

8.
Abstract: The authors derive empirical likelihood confidence regions for the comparison distribution of two populations whose distributions are to be tested for equality using random samples. Another application they consider is to ROC curves, which are used to compare measurements of a diagnostic test from two populations. The authors investigate the smoothed empirical likelihood method for estimation in this context, and empirical likelihood based confidence intervals are obtained by means of the Wilks theorem. A bootstrap approach allows for the construction of confidence bands. The method is illustrated with data analysis and a simulation study.  相似文献   

9.
Residual marked empirical process-based tests are commonly used in regression models. However, they suffer from data sparseness in high-dimensional space when there are many covariates. This paper has three purposes. First, we suggest a partial dimension reduction adaptive-to-model testing procedure that can be omnibus against general global alternative models although it fully use the dimension reduction structure under the null hypothesis. This feature is because that the procedure can automatically adapt to the null and alternative models, and thus greatly overcomes the dimensionality problem. Second, to achieve the above goal, we propose a ridge-type eigenvalue ratio estimate to automatically determine the number of linear combinations of the covariates under the null and alternative hypotheses. Third, a Monte-Carlo approximation to the sampling null distribution is suggested. Unlike existing bootstrap approximation methods, this gives an approximation as close to the sampling null distribution as possible by fully utilising the dimension reduction model structure under the null model. Simulation studies and real data analysis are then conducted to illustrate the performance of the new test and compare it with existing tests.  相似文献   

10.
In this paper, we use a smoothed empirical likelihood method to investigate the difference of quantiles under censorship. An empirical log-likelihood ratio is derived and its asymptotic distribution is shown to be chi-squared. Approximate confidence regions based on this method are constructed. Simulation studies are used to compare the empirical likelihood and the normal approximation method in terms of its coverage accuracy. It is found that the empirical likelihood method provides a much better performance. The research is supported by NSFC (10231030) and RFDP.  相似文献   

11.
In this article the author investigates the application of the empirical‐likelihood‐based inference for the parameters of varying‐coefficient single‐index model (VCSIM). Unlike the usual cases, if there is no bias correction the asymptotic distribution of the empirical likelihood ratio cannot achieve the standard chi‐squared distribution. To this end, a bias‐corrected empirical likelihood method is employed to construct the confidence regions (intervals) of regression parameters, which have two advantages, compared with those based on normal approximation, that is, (1) they do not impose prior constraints on the shape of the regions; (2) they do not require the construction of a pivotal quantity and the regions are range preserving and transformation respecting. A simulation study is undertaken to compare the empirical likelihood with the normal approximation in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. A real data example is given to illustrate the proposed approach. The Canadian Journal of Statistics 38: 434–452; 2010 © 2010 Statistical Society of Canada  相似文献   

12.
A smoothed bootstrap method is presented for the purpose of bandwidth selection in nonparametric hazard rate estimation for iid data. In this context, two new bootstrap bandwidth selectors are established based on the exact expression of the bootstrap version of the mean integrated squared error of some approximations of the kernel hazard rate estimator. This is very useful since Monte Carlo approximation is no longer needed for the implementation of the two bootstrap selectors. A simulation study is carried out in order to show the empirical performance of the new bootstrap bandwidths and to compare them with other existing selectors. The methods are illustrated by applying them to a diabetes data set.  相似文献   

13.
Low income proportion is an important index in comparisons of poverty in countries around the world. The stability of a society depends heavily on this index. An accurate and reliable estimation of this index plays an important role for government's economic policies. In this paper, the authors study empirical likelihood‐based inferences for a low income proportion under the simple random sampling and stratified random sampling designs. It is shown that the limiting distributions of the empirical likelihood ratios for the low income proportion are the scaled chi‐square distributions. The authors propose various empirical likelihood‐based confidence intervals for the low income proportion. Extensive simulation studies are conducted to evaluate the relative performance of the normal approximation‐based interval, bootstrap‐based intervals, and the empirical likelihood‐based intervals. The proposed methods are also applied to analyzing a real economic survey income dataset. The Canadian Journal of Statistics 39: 1–16; 2011 ©2011 Statistical Society of Canada  相似文献   

14.
The area under the Receiver Operating Characteristic (ROC) curve (AUC) and related summary indices are widely used for assessment of accuracy of an individual and comparison of performances of several diagnostic systems in many areas including studies of human perception, decision making, and the regulatory approval process for new diagnostic technologies. Many investigators have suggested implementing the bootstrap approach to estimate variability of AUC-based indices. Corresponding bootstrap quantities are typically estimated by sampling a bootstrap distribution. Such a process, frequently termed Monte Carlo bootstrap, is often computationally burdensome and imposes an additional sampling error on the resulting estimates. In this article, we demonstrate that the exact or ideal (sampling error free) bootstrap variances of the nonparametric estimator of AUC can be computed directly, i.e., avoiding resampling of the original data, and we develop easy-to-use formulas to compute them. We derive the formulas for the variances of the AUC corresponding to a single given or random reader, and to the average over several given or randomly selected readers. The derived formulas provide an algorithm for computing the ideal bootstrap variances exactly and hence improve many bootstrap methods proposed earlier for analyzing AUCs by eliminating the sampling error and sometimes burdensome computations associated with a Monte Carlo (MC) approximation. In addition, the availability of closed-form solutions provides the potential for an analytical assessment of the properties of bootstrap variance estimators. Applications of the proposed method are shown on two experimentally ascertained datasets that illustrate settings commonly encountered in diagnostic imaging. In the context of the two examples we also demonstrate the magnitude of the effect of the sampling error of the MC estimators on the resulting inferences.  相似文献   

15.
The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performance of two or more laboratory or diagnostic tests. In this paper, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric and the other one is non-parametric and both have missing data. After imputing missing values, we derive the semi-empirical likelihood ratio statistic and the corresponding likelihood equations. It is shown that the log-semi-empirical likelihood ratio statistic is asymptotically scaled chi-squared. The estimating equations are solved simultaneously to obtain the estimated lower and upper bounds of semi-empirical likelihood confidence intervals. We conduct extensive simulation studies to evaluate the finite sample performance of the proposed empirical likelihood confidence intervals with various sample sizes and different missing probabilities.  相似文献   

16.
In this paper we use the empirical likelihood method to construct confidence interval for truncation parameter in random truncation model. The empirical log-likelihood ratio is derived and its asymptotic distribution is shown to be a weighted chi-square. Simulation studies are used to compare the confidence intervals based on empirical likelihood and those based on normal approximation. It is found that the empirical likelihood method provides improved confidence interval.  相似文献   

17.
The problem of estimating standard errors for diagnostic accuracy measures might be challenging for many complicated models. We can address such a problem by using the Bootstrap methods to blunt its technical edge with resampled empirical distributions. We consider two cases where bootstrap methods can successfully improve our knowledge of the sampling variability of the diagnostic accuracy estimators. The first application is to make inference for the area under the ROC curve resulted from a functional logistic regression model which is a sophisticated modelling device to describe the relationship between a dichotomous response and multiple covariates. We consider using this regression method to model the predictive effects of multiple independent variables on the occurrence of a disease. The accuracy measures, such as the area under the ROC curve (AUC) are developed from the functional regression. Asymptotical results for the empirical estimators are provided to facilitate inferences. The second application is to test the difference of two weighted areas under the ROC curve (WAUC) from a paired two sample study. The correlation between the two WAUC complicates the asymptotic distribution of the test statistic. We then employ the bootstrap methods to gain satisfactory inference results. Simulations and examples are supplied in this article to confirm the merits of the bootstrap methods.  相似文献   

18.
In many applications, a finite population contains a large proportion of zero values that make the population distribution severely skewed. An unequal‐probability sampling plan compounds the problem, and as a result the normal approximation to the distribution of various estimators has poor precision. The central‐limit‐theorem‐based confidence intervals for the population mean are hence unsatisfactory. Complex designs also make it hard to pin down useful likelihood functions, hence a direct likelihood approach is not an option. In this paper, we propose a pseudo‐likelihood approach. The proposed pseudo‐log‐likelihood function is an unbiased estimator of the log‐likelihood function when the entire population is sampled. Simulations have been carried out. When the inclusion probabilities are related to the unit values, the pseudo‐likelihood intervals are superior to existing methods in terms of the coverage probability, the balance of non‐coverage rates on the lower and upper sides, and the interval length. An application with a data set from the Canadian Labour Force Survey‐2000 also shows that the pseudo‐likelihood method performs more appropriately than other methods. The Canadian Journal of Statistics 38: 582–597; 2010 © 2010 Statistical Society of Canada  相似文献   

19.
In this paper we apply empirical likelihood method to the error density estimators in first-order autoregressive models under some mild conditions. The log-likelihood ratio statistic is shown to be asymptotically chi-squared distributed at a fixed point. In simulation, we show that the empirical likelihood produces confidence intervals having theoretical coverage accuracy which is better than normal approximation.  相似文献   

20.
Many diagnostic tests may be available to identify a particular disease. Diagnostic performance can be potentially improved by combining. “Either” and “both” positive strategies for combining tests have been discussed in the literature, where a gain in diagnostic performance is measured by a ratio of positive (negative) likelihood ratio of the combined test to that of an individual test. Normal theory and bootstrap confidence intervals are constructed for gains in likelihood ratios. The performance (coverage probability, width) of the two methods are compared via simulation. All confidence intervals perform satisfactorily for large samples, while bootstrap performs better in smaller samples in terms of coverage and width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号