首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bayesian analysis based on the partial likelihood for Cox's proportional hazards model is frequently used because of its simplicity. The Bayesian partial likelihood approach is often justified by showing that it approximates the full Bayesian posterior of the regression coefficients with a diffuse prior on the baseline hazard function. This, however, may not be appropriate when ties exist among uncensored observations. In that case, the full Bayesian and Bayesian partial likelihood posteriors can be much different. In this paper, we propose a new Bayesian partial likelihood approach for many tied observations and justify its use.  相似文献   

2.
Count data with excess zeros are common in many biomedical and public health applications. The zero-inflated Poisson (ZIP) regression model has been widely used in practice to analyze such data. In this paper, we extend the classical ZIP regression framework to model count time series with excess zeros. A Markov regression model is presented and developed, and the partial likelihood is employed for statistical inference. Partial likelihood inference has been successfully applied in modeling time series where the conditional distribution of the response lies within the exponential family. Extending this approach to ZIP time series poses methodological and theoretical challenges, since the ZIP distribution is a mixture and therefore lies outside the exponential family. In the partial likelihood framework, we develop an EM algorithm to compute the maximum partial likelihood estimator (MPLE). We establish the asymptotic theory of the MPLE under mild regularity conditions and investigate its finite sample behavior in a simulation study. The performances of different partial-likelihood based model selection criteria are compared in the presence of model misspecification. Finally, we present an epidemiological application to illustrate the proposed methodology.  相似文献   

3.
The proportional reversed hazards model explains the multiplicative effect of covariates on the baseline reversed hazard rate function of lifetimes. In the present study, we introduce a proportional cause-specific reversed hazards model. The proposed regression model facilitates the analysis of failure time data with multiple causes of failure under left censoring. We estimate the regression parameters using a partial likelihood approach. We provide Breslow's type estimators for the cumulative cause-specific reversed hazard rate functions. Asymptotic properties of the estimators are discussed. Simulation studies are conducted to assess their performance. We illustrate the applicability of the proposed model using a real data set.  相似文献   

4.
Since the publication of the seminal paper by Cox (1972), proportional hazard model has become very popular in regression analysis for right censored data. In observational studies, treatment assignment may depend on observed covariates. If these confounding variables are not accounted for properly, the inference based on the Cox proportional hazard model may perform poorly. As shown in Rosenbaum and Rubin (1983), under the strongly ignorable treatment assignment assumption, conditioning on the propensity score yields valid causal effect estimates. Therefore we incorporate the propensity score into the Cox model for causal inference with survival data. We derive the asymptotic property of the maximum partial likelihood estimator when the model is correctly specified. Simulation results show that our method performs quite well for observational data. The approach is applied to a real dataset on the time of readmission of trauma patients. We also derive the asymptotic property of the maximum partial likelihood estimator with a robust variance estimator, when the model is incorrectly specified.  相似文献   

5.
ABSTRACT

We study the method for generating pseudo random numbers under various special cases of the Cox model with time-dependent covariates when the baseline hazard function may not be constant and the random variable may equal infinity with a positive probability. During our simulation studies in computing the partial likelihood estimates, in between 3% and 20% of the time with a moderate sample size, it happens that the partial likelihood estimate of the regression coefficient is ∞ for the data from the Cox model. We propose a semi-parametric estimator as a modification for such a case. We present simulation results on the asymptotic properties of the semi-parametric estimator.  相似文献   

6.
《统计学通讯:理论与方法》2012,41(13-14):2437-2444
We propose a new approach to estimate the parameters of the Cox proportional hazards model in the presence of collinearity. Generally, a maximum partial likelihood estimator is used to estimate parameters for the Cox proportional hazards model. However, the maximum partial likelihood estimators can be seriously affected by the presence of collinearity since the parameter estimates result in large variances.

In this study, we develop a Liu-type estimator for Cox proportional hazards model parameters and compare it with a ridge regression estimator based on the scalar mean squared error (MSE). Finally, we evaluate its performance through a simulation study.  相似文献   

7.
In many clinical studies where time to failure is of primary interest, patients may fail or die from one of many causes where failure time can be right censored. In some circumstances, it might also be the case that patients are known to die but the cause of death information is not available for some patients. Under the assumption that cause of death is missing at random, we compare the Goetghebeur and Ryan (1995, Biometrika, 82, 821–833) partial likelihood approach with the Dewanji (1992, Biometrika, 79, 855–857)partial likelihood approach. We show that the estimator for the regression coefficients based on the Dewanji partial likelihood is not only consistent and asymptotically normal, but also semiparametric efficient. While the Goetghebeur and Ryan estimator is more robust than the Dewanji partial likelihood estimator against misspecification of proportional baseline hazards, the Dewanji partial likelihood estimator allows the probability of missing cause of failure to depend on covariate information without the need to model the missingness mechanism. Tests for proportional baseline hazards are also suggested and a robust variance estimator is derived.  相似文献   

8.
This article is concerned with statistical inference of the partial linear isotonic regression model missing response and measurement errors in covariates. We proposed an empirical likelihood ratio test statistics and show that it has a limiting weighted chi-square distribution. An adjusted empirical likelihood ratio statistic, which is shown to have a limiting standard central chi-square distribution, is then proposed further. A maximum empirical likelihood estimator is also developed. A simulation study is conducted to examine the finite-sample property of proposed procedure.  相似文献   

9.
A variety of statistical regression models have been proposed for the comparison of ROC curves for different markers across covariate groups. Pepe developed parametric models for the ROC curve that induce a semiparametric model for the market distributions to relax the strong assumptions in fully parametric models. We investigate the analysis of the power ROC curve using these ROC-GLM models compared to the parametric exponential model and the estimating equations derived from the usual partial likelihood methods in time-to-event analyses. In exploring the robustness to violations of distributional assumptions, we find that the ROC-GLM provides an extra measure of robustness.  相似文献   

10.
Kendall and Gehan estimating functions are commonly used to estimate the regression parameter in accelerated failure time model with censored observations in survival analysis. In this paper, we apply the jackknife empirical likelihood method to overcome the computation difficulty about interval estimation. A Wilks’ theorem of jackknife empirical likelihood for U-statistic type estimating equations is established, which is used to construct the confidence intervals for the regression parameter. We carry out an extensive simulation study to compare the Wald-type procedure, the empirical likelihood method, and the jackknife empirical likelihood method. The proposed jackknife empirical likelihood method has a better performance than the existing methods. We also use a real data set to compare the proposed methods.  相似文献   

11.
Gu MG  Sun L  Zuo G 《Lifetime data analysis》2005,11(4):473-488
An important property of Cox regression model is that the estimation of regression parameters using the partial likelihood procedure does not depend on its baseline survival function. We call such a procedure baseline-free. Using marginal likelihood, we show that an baseline-free procedure can be derived for a class of general transformation models under interval censoring framework. The baseline-free procedure results a simplified and stable computation algorithm for some complicated and important semiparametric models, such as frailty models and heteroscedastic hazard/rank regression models, where the estimation procedures so far available involve estimation of the infinite dimensional baseline function. A detailed computational algorithm using Markov Chain Monte Carlo stochastic approximation is presented. The proposed procedure is demonstrated through extensive simulation studies, showing the validity of asymptotic consistency and normality. We also illustrate the procedure with a real data set from a study of breast cancer. A heuristic argument showing that the score function is a mean zero martingale is provided.  相似文献   

12.
This paper concerns the asymptotic properties of the maximum likelihood estimators of the parameters in a non regular Cox model involving a change-point in the regression on time-dependent covariates. The global consistency derives from the uniform convergence of the partial log-likelihood. We prove that the estimator of the change-point is n -consistent and the estimator of the regression parameter n 1/2 -consistent, and their asymptotic distributions are established.  相似文献   

13.
The conventional Cox proportional hazards regression model contains a loglinear relative risk function, linking the covariate information to the hazard ratio with a finite number of parameters. A generalization, termed the partly linear Cox model, allows for both finite dimensional parameters and an infinite dimensional parameter in the relative risk function, providing a more robust specification of the relative risk function. In this work, a likelihood based inference procedure is developed for the finite dimensional parameters of the partly linear Cox model. To alleviate the problems associated with a likelihood approach in the presence of an infinite dimensional parameter, the relative risk is reparameterized such that the finite dimensional parameters of interest are orthogonal to the infinite dimensional parameter. Inference on the finite dimensional parameters is accomplished through maximization of the profile partial likelihood, profiling out the infinite dimensional nuisance parameter using a kernel function. The asymptotic distribution theory for the maximum profile partial likelihood estimate is established. It is determined that this estimate is asymptotically efficient; the orthogonal reparameterization enables employment of profile likelihood inference procedures without adjustment for estimation of the nuisance parameter. An example from a retrospective analysis in cancer demonstrates the methodology.  相似文献   

14.
We propose a robust likelihood approach for the Birnbaum–Saunders regression model under model misspecification, which provides full likelihood inferences about regression parameters without knowing the true random mechanisms underlying the data. Monte Carlo simulation experiments and analysis of real data sets are carried out to illustrate the efficacy of the proposed robust methodology.  相似文献   

15.
Case-base sampling provides an alternative to risk set sampling based methods to estimate hazard regression models, in particular when absolute hazards are also of interest in addition to hazard ratios. The case-base sampling approach results in a likelihood expression of the logistic regression form, but instead of categorized time, such an expression is obtained through sampling of a discrete set of person-time coordinates from all follow-up data. In this paper, in the context of a time-dependent exposure such as vaccination, and a potentially recurrent adverse event outcome, we show that the resulting partial likelihood for the outcome event intensity has the asymptotic properties of a likelihood. We contrast this approach to self-matched case-base sampling, which involves only within-individual comparisons. The efficiency of the case-base methods is compared to that of standard methods through simulations, suggesting that the information loss due to sampling is minimal.  相似文献   

16.
In this study, adjustment of profile likelihood function of parameter of interest in presence of many nuisance parameters is investigated for survival regression models. Our objective is to extend the Barndorff–Nielsen’s technique to Weibull regression models for estimation of shape parameter in presence of many nuisance and regression parameters. We conducted Monte-Carlo simulation studies and a real data analysis, all of which demonstrate and suggest that the modified profile likelihood estimators outperform the profile likelihood estimators in terms of three comparison criterion: mean squared errors, bias and standard errors.  相似文献   

17.
In this paper, we consider improved estimating equations for semiparametric partial linear models (PLM) for longitudinal data, or clustered data in general. We approximate the non‐parametric function in the PLM by a regression spline, and utilize quadratic inference functions (QIF) in the estimating equations to achieve a more efficient estimation of the parametric part in the model, even when the correlation structure is misspecified. Moreover, we construct a test which is an analogue to the likelihood ratio inference function for inferring the parametric component in the model. The proposed methods perform well in simulation studies and real data analysis conducted in this paper.  相似文献   

18.
ABSTRACT

We introduce a universal robust likelihood approach for regression analysis of general count data. The robust likelihood function is able to accommodate a wide range of dispersion and is insensitive to model failures. We use simulations and real data analysis to demonstrate the merit of the robust procedure.  相似文献   

19.
Most methods for survival prediction from high-dimensional genomic data combine the Cox proportional hazards model with some technique of dimension reduction, such as partial least squares regression (PLS). Applying PLS to the Cox model is not entirely straightforward, and multiple approaches have been proposed. The method of Park et al. (Bioinformatics 18(Suppl. 1):S120–S127, 2002) uses a reformulation of the Cox likelihood to a Poisson type likelihood, thereby enabling estimation by iteratively reweighted partial least squares for generalized linear models. We propose a modification of the method of park et al. (2002) such that estimates of the baseline hazard and the gene effects are obtained in separate steps. The resulting method has several advantages over the method of park et al. (2002) and other existing Cox PLS approaches, as it allows for estimation of survival probabilities for new patients, enables a less memory-demanding estimation procedure, and allows for incorporation of lower-dimensional non-genomic variables like disease grade and tumor thickness. We also propose to combine our Cox PLS method with an initial gene selection step in which genes are ordered by their Cox score and only the highest-ranking k% of the genes are retained, obtaining a so-called supervised partial least squares regression method. In simulations, both the unsupervised and the supervised version outperform other Cox PLS methods.  相似文献   

20.
This article develops a local partial likelihood technique to estimate the time-dependent coefficients in Cox's regression model. The basic idea is a simple extension of the local linear fitting technique used in the scatterplot smoothing. The coefficients are estimated locally based on the partial likelihood in a window around each time point. Multiple time-dependent covariates are incorporated in the local partial likelihood procedure. The procedure is useful as a diagnostic tool and can be used in uncovering time-dependencies or departure from the proportional hazards model. The programming involved in the local partial likelihood estimation is relatively simple and it can be modified with few efforts from the existing programs for the proportional hazards model. The asymptotic properties of the resulting estimator are established and compared with those from the local constant fitting. A consistent estimator of the asymptotic variance is also proposed. The approach is illustrated by a real data set from the study of gastric cancer patients and a simulation study is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号