首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The term 'futility' is used to refer to the inability of a clinical trial to achieve its objectives. In particular, stopping a clinical trial when the interim results suggest that it is unlikely to achieve statistical significance can save resources that could be used on more promising research. There are various approaches that have been proposed to assess futility, including stochastic curtailment, predictive power, predictive probability, and group sequential methods. In this paper, we describe and contrast these approaches, and discuss several issues associated with futility analyses, such as ethical considerations, whether or not type I error can or should be reclaimed, one-sided vs two-sided futility rules, and the impact of futility analyses on power.  相似文献   

2.
Conditional power calculations are frequently used to guide the decision whether or not to stop a trial for futility or to modify planned sample size. These ignore the information in short‐term endpoints and baseline covariates, and thereby do not make fully efficient use of the information in the data. We therefore propose an interim decision procedure based on the conditional power approach which exploits the information contained in baseline covariates and short‐term endpoints. We will realize this by considering the estimation of the treatment effect at the interim analysis as a missing data problem. This problem is addressed by employing specific prediction models for the long‐term endpoint which enable the incorporation of baseline covariates and multiple short‐term endpoints. We show that the proposed procedure leads to an efficiency gain and a reduced sample size, without compromising the Type I error rate of the procedure, even when the adopted prediction models are misspecified. In particular, implementing our proposal in the conditional power approach enables earlier decisions relative to standard approaches, whilst controlling the probability of an incorrect decision. This time gain results in a lower expected number of recruited patients in case of stopping for futility, such that fewer patients receive the futile regimen. We explain how these methods can be used in adaptive designs with unblinded sample size re‐assessment based on the inverse normal P‐value combination method to control Type I error. We support the proposal by Monte Carlo simulations based on data from a real clinical trial.  相似文献   

3.
In monitoring clinical trials, the question of futility, or whether the data thus far suggest that the results at the final analysis are unlikely to be statistically successful, is regularly of interest over the course of a study. However, the opposite viewpoint of whether the study is sufficiently demonstrating proof of concept (POC) and should continue is a valuable consideration and ultimately should be addressed with high POC power so that a promising study is not prematurely terminated. Conditional power is often used to assess futility, and this article interconnects the ideas of assessing POC for the purpose of study continuation with conditional power, while highlighting the importance of the POC type I error and the POC type II error for study continuation or not at the interim analysis. Methods for analyzing subgroups motivate the interim analyses to maintain high POC power via an adjusted interim POC significance level criterion for study continuation or testing against an inferiority margin. Furthermore, two versions of conditional power based on the assumed effect size or the observed interim effect size are considered. Graphical displays illustrate the relationship of the POC type II error for premature study termination to the POC type I error for study continuation and the associated conditional power criteria.  相似文献   

4.
In group sequential clinical trials, there are several sample size re-estimation methods proposed in the literature that allow for change of sample size at the interim analysis. Most of these methods are based on either the conditional error function or the interim effect size. Our simulation studies compared the operating characteristics of three commonly used sample size re-estimation methods, Chen et al. (2004), Cui et al. (1999), and Muller and Schafer (2001). Gao et al. (2008) extended the CDL method and provided an analytical expression of lower and upper threshold of conditional power where the type I error is preserved. Recently, Mehta and Pocock (2010) extensively discussed that the real benefit of the adaptive approach is to invest the sample size resources in stages and increasing the sample size only if the interim results are in the so called “promising zone” which they define in their article. We incorporated this concept in our simulations while comparing the three methods. To test the robustness of these methods, we explored the impact of incorrect variance assumption on the operating characteristics. We found that the operating characteristics of the three methods are very comparable. In addition, the concept of promising zone, as suggested by MP, gives the desired power and smaller average sample size, and thus increases the efficiency of the trial design.  相似文献   

5.
This paper describes how a multistage analysis strategy for a clinical trial can assess a sequence of hypotheses that pertain to successively more stringent criteria for excess risk exclusion or superiority for a primary endpoint with a low event rate. The criteria for assessment can correspond to excess risk of an adverse event or to a guideline for sufficient efficacy as in the case of vaccine trials. The proposed strategy is implemented through a set of interim analyses, and success for one or more of the less stringent criteria at an interim analysis can be the basis for a regulatory submission, whereas the clinical trial continues to accumulate information to address the more stringent, but not futile, criteria. Simulations show that the proposed strategy is satisfactory for control of type I error, sufficient power, and potential success at interim analyses when the true relative risk is more favorable than assumed for the planned sample size. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Futility analysis reduces the opportunity to commit Type I error. For a superiority study testing a two‐sided hypothesis, an interim futility analysis can substantially reduce the overall Type I error while keeping the overall power relatively intact. In this paper, we quantify the extent of the reduction for both one‐sided and two‐sided futility analysis. We argue that, because of the reduction, we should be allowed to set the significance level for the final analysis at a level higher than the allowable Type I error rate for the study. We propose a method to find the significance level for the final analysis. We illustrate the proposed methodology and show that a design employing a futility analysis can reduce the sample size, and therefore reduce the exposure of patients to unnecessary risk and lower the cost of a clinical trial. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Simon's two-stage designs are widely used in clinical trials to assess the activity of a new treatment. In practice, it is often the case that the second stage sample size is different from the planned one. For this reason, the critical value for the second stage is no longer valid for statistical inference. Existing approaches for making statistical inference are either based on asymptotic methods or not optimal. We propose an approach to maximize the power of a study while maintaining the type I error rate, where the type I error rate and power are calculated exactly from binomial distributions. The critical values of the proposed approach are numerically searched by an intelligent algorithm over the complete parameter space. It is guaranteed that the proposed approach is at least as powerful as the conditional power approach which is a valid but non-optimal approach. The power gain of the proposed approach can be substantial as compared to the conditional power approach. We apply the proposed approach to a real Phase II clinical trial.  相似文献   

8.
Planning and conducting interim analysis are important steps for long-term clinical trials. In this article, the concept of conditional power is combined with the classic analysis of variance (ANOVA) for a study of two-stage sample size re-estimation based on interim analysis. The overall Type I and Type II errors would be inflated by interim analysis. We compared the effects on re-estimating sample sizes with and without the adjustment of Type I and Type II error rates due to interim analysis.  相似文献   

9.
Repeated confidence interval (RCI) is an important tool for design and monitoring of group sequential trials according to which we do not need to stop the trial with planned statistical stopping rules. In this article, we derive RCIs when data from each stage of the trial are not independent thus it is no longer a Brownian motion (BM) process. Under this assumption, a larger class of stochastic processes fractional Brownian motion (FBM) is considered. Comparisons of RCI width and sample size requirement are made to those under Brownian motion for different analysis times, Type I error rates and number of interim analysis. Power family spending functions including Pocock, O'Brien-Fleming design types are considered for these simulations. Interim data from BHAT and oncology trials is used to illustrate how to derive RCIs under FBM for efficacy and futility monitoring.  相似文献   

10.
11.
For the case of a one‐sample experiment with known variance σ2=1, it has been shown that at interim analysis the sample size (SS) may be increased by any arbitrary amount provided: (1) The conditional power (CP) at interim is ?50% and (2) there can be no decision to decrease the SS (stop the trial early). In this paper we verify this result for the case of a two‐sample experiment with proportional SS in the treatment groups and an arbitrary common variance. Numerous authors have presented the formula for the CP at interim for a two‐sample test with equal SS in the treatment groups and an arbitrary common variance, for both the one‐ and two‐sided hypothesis tests. In this paper we derive the corresponding formula for the case of unequal, but proportional SS in the treatment groups for both one‐sided superiority and two‐sided hypothesis tests. Finally, we present an SAS macro for doing this calculation and provide a worked out hypothetical example. In discussion we note that this type of trial design trades the ability to stop early (for lack of efficacy) for the elimination of the Type I error penalty. The loss of early stopping requires that such a design employs a data monitoring committee, blinding of the sponsor to the interim calculations, and pre‐planning of how much and under what conditions to increase the SS and that this all be formally written into an interim analysis plan before the start of the study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A standard two-arm randomised controlled trial usually compares an intervention to a control treatment with equal numbers of patients randomised to each treatment arm and only data from within the current trial are used to assess the treatment effect. Historical data are used when designing new trials and have recently been considered for use in the analysis when the required number of patients under a standard trial design cannot be achieved. Incorporating historical control data could lead to more efficient trials, reducing the number of controls required in the current study when the historical and current control data agree. However, when the data are inconsistent, there is potential for biased treatment effect estimates, inflated type I error and reduced power. We introduce two novel approaches for binary data which discount historical data based on the agreement with the current trial controls, an equivalence approach and an approach based on tail area probabilities. An adaptive design is used where the allocation ratio is adapted at the interim analysis, randomising fewer patients to control when there is agreement. The historical data are down-weighted in the analysis using the power prior approach with a fixed power. We compare operating characteristics of the proposed design to historical data methods in the literature: the modified power prior; commensurate prior; and robust mixture prior. The equivalence probability weight approach is intuitive and the operating characteristics can be calculated exactly. Furthermore, the equivalence bounds can be chosen to control the maximum possible inflation in type I error.  相似文献   

13.
Stochastic curtailment has been considered for the interim monitoring of group sequential trials (Davis and Hardy, 1994). Statistical boundaries in Davis and Hardy (1994) were derived using theory of Brownian motion. In some clinical trials, the conditions of forming a Brownian motion may not be satisfied. In this paper, we extend the computations of Brownian motion based boundaries, expected stopping times, and type I and type II error rates to fractional Brownian motion (FBM). FBM includes Brownian motion as a special case. Designs under FBM are compared to those under Brownian motion and to those of O’Brien–Fleming type tests. One- and two-sided boundaries for efficacy and futility monitoring are also discussed. Results show that boundary values decrease and error rates deviate from design levels when the Hurst parameter increases from 0.1 to 0.9, these changes should be considered when designing a study under FBM.  相似文献   

14.
An internal pilot with interim analysis (IPIA) design combines interim power analysis (an internal pilot) with interim data analysis (two stage group sequential). We provide IPIA methods for single df hypotheses within the Gaussian general linear model, including one and two group t tests. The design allows early stopping for efficacy and futility while also re-estimating sample size based on an interim variance estimate. Study planning in small samples requires the exact and computable forms reported here. The formulation gives fast and accurate calculations of power, type I error rate, and expected sample size.  相似文献   

15.
Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well‐known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph‐based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid‐trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Response‐adaptive randomisation (RAR) can considerably improve the chances of a successful treatment outcome for patients in a clinical trial by skewing the allocation probability towards better performing treatments as data accumulates. There is considerable interest in using RAR designs in drug development for rare diseases, where traditional designs are not either feasible or ethically questionable. In this paper, we discuss and address a major criticism levelled at RAR: namely, type I error inflation due to an unknown time trend over the course of the trial. The most common cause of this phenomenon is changes in the characteristics of recruited patients—referred to as patient drift. This is a realistic concern for clinical trials in rare diseases due to their lengthly accrual rate. We compute the type I error inflation as a function of the time trend magnitude to determine in which contexts the problem is most exacerbated. We then assess the ability of different correction methods to preserve type I error in these contexts and their performance in terms of other operating characteristics, including patient benefit and power. We make recommendations as to which correction methods are most suitable in the rare disease context for several RAR rules, differentiating between the 2‐armed and the multi‐armed case. We further propose a RAR design for multi‐armed clinical trials, which is computationally efficient and robust to several time trends considered.  相似文献   

17.
A common approach to analysing clinical trials with multiple outcomes is to control the probability for the trial as a whole of making at least one incorrect positive finding under any configuration of true and false null hypotheses. Popular approaches are to use Bonferroni corrections or structured approaches such as, for example, closed-test procedures. As is well known, such strategies, which control the family-wise error rate, typically reduce the type I error for some or all the tests of the various null hypotheses to below the nominal level. In consequence, there is generally a loss of power for individual tests. What is less well appreciated, perhaps, is that depending on approach and circumstances, the test-wise loss of power does not necessarily lead to a family wise loss of power. In fact, it may be possible to increase the overall power of a trial by carrying out tests on multiple outcomes without increasing the probability of making at least one type I error when all null hypotheses are true. We examine two types of problems to illustrate this. Unstructured testing problems arise typically (but not exclusively) when many outcomes are being measured. We consider the case of more than two hypotheses when a Bonferroni approach is being applied while for illustration we assume compound symmetry to hold for the correlation of all variables. Using the device of a latent variable it is easy to show that power is not reduced as the number of variables tested increases, provided that the common correlation coefficient is not too high (say less than 0.75). Afterwards, we will consider structured testing problems. Here, multiplicity problems arising from the comparison of more than two treatments, as opposed to more than one measurement, are typical. We conduct a numerical study and conclude again that power is not reduced as the number of tested variables increases.  相似文献   

18.
Randomised controlled trials are considered the gold standard in trial design. However, phase II oncology trials with a binary outcome are often single-arm. Although a number of reasons exist for choosing a single-arm trial, the primary reason is that single-arm designs require fewer participants than their randomised equivalents. Therefore, the development of novel methodology that makes randomised designs more efficient is of value to the trials community. This article introduces a randomised two-arm binary outcome trial design that includes stochastic curtailment (SC), allowing for the possibility of stopping a trial before the final conclusions are known with certainty. In addition to SC, the proposed design involves the use of a randomised block design, which allows investigators to control the number of interim analyses. This approach is compared with existing designs that also use early stopping, through the use of a loss function comprised of a weighted sum of design characteristics. Comparisons are also made using an example from a real trial. The comparisons show that for many possible loss functions, the proposed design is superior to existing designs. Further, the proposed design may be more practical, by allowing a flexible number of interim analyses. One existing design produces superior design realisations when the anticipated response rate is low. However, when using this design, the probability of rejecting the null hypothesis is sensitive to misspecification of the null response rate. Therefore, when considering randomised designs in phase II, we recommend the proposed approach be preferred over other sequential designs.  相似文献   

19.
Interest in confirmatory adaptive combined phase II/III studies with treatment selection has increased in the past few years. These studies start comparing several treatments with a control. One (or more) treatment(s) is then selected after the first stage based on the available information at an interim analysis, including interim data from the ongoing trial, external information and expert knowledge. Recruitment continues, but now only for the selected treatment(s) and the control, possibly in combination with a sample size reassessment. The final analysis of the selected treatment(s) includes the patients from both stages and is performed such that the overall Type I error rate is strictly controlled, thus providing confirmatory evidence of efficacy at the final analysis. In this paper we describe two approaches to control the Type I error rate in adaptive designs with sample size reassessment and/or treatment selection. The first method adjusts the critical value using a simulation-based approach, which incorporates the number of patients at an interim analysis, the true response rates, the treatment selection rule, etc. We discuss the underlying assumptions of simulation-based procedures and give several examples where the Type I error rate is not controlled if some of the assumptions are violated. The second method is an adaptive Bonferroni-Holm test procedure based on conditional error rates of the individual treatment-control comparisons. We show that this procedure controls the Type I error rate, even if a deviation from a pre-planned adaptation rule or the time point of such a decision is necessary.  相似文献   

20.
A strategy for stopping long-term randomized clinical trials with time-to-event as a primary outcome measure has been considered using the criteria requiring multiple consecutive (or non consecutive) rejections at a specified α-level that controls against elevation of type I error. The procedure using two consecutive rejections is presented in this work along with the corresponding α-levels for the interim tests. The boundary cutoff values for these interim levels were determined based on an overall prespecified test size and were calculated using multidimensional integration and/or simulations. The reduction in the interim α-level values that is required to maintain the experiment-wise error rate is found to be modest. The power of the test is evaluated under various alternative accrual and hazard patterns. This procedure provides a more realistic stopping rule in large multi-center trials where it may be undesirable to terminate a trial unless a sustained effect has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号