首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If a specific biological mechanism could be determined by which a carcinogen increases lung cancer risk, how might this knowledge be used to improve risk assessment? To explore this issue, we assume (perhaps incorrectly) that arsenic in cigarette smoke increases lung cancer risk by hypermethylating the promoter region of gene p16INK4a, leading to a more rapid entry of altered (initiated) cells into a clonal expansion phase. The potential impact on lung cancer of removing arsenic is then quantified using a three‐stage version of a multistage clonal expansion (MSCE) model. This refines the usual two‐stage clonal expansion (TSCE) model of carcinogenesis by resolving its intermediate or “initiated” cell compartment into two subcompartments, representing experimentally observed “patch” and “field” cells. This refinement allows p16 methylation effects to be represented as speeding transitions of cells from the patch state to the clonally expanding field state. Given these assumptions, removing arsenic might greatly reduce the number of nonsmall cell lung cancer cells (NSCLCs) produced in smokers, by up to two‐thirds, depending on the fraction (between 0 and 1) of the smoking‐induced increase in the patch‐to‐field transition rate prevented if arsenic were removed. At present, this fraction is unknown (and could be as low as zero), but the possibility that it could be high (close to 1) cannot be ruled out without further data.  相似文献   

2.
Use of similar or identical antibiotics in both human and veterinary medicine has come under increasing scrutiny by regulators concerned that bacteria resistant to animal antibiotics will infect people and resist treatment with similar human antibiotics, leading to excess illnesses and deaths. Scientists, regulators, and interest groups in the United States and Europe have urged bans on nontherapeutic and some therapeutic uses of animal antibiotics to protect human health. Many regulators and public health experts have also expressed dissatisfaction with the perceived limitations of quantitative risk assessment and have proposed alternative qualitative and judgmental approaches ranging from "attributable fraction" estimates to risk management recommendations based on the precautionary principle or on expert judgments about the importance of classes of compounds in human medicine. This article presents a more traditional quantitative risk assessment of the likely human health impacts of continuing versus withdrawing use of fluoroquinolones and macrolides in production of broiler chickens in the United States. An analytic framework is developed and applied to available data. It indicates that withdrawing animal antibiotics can cause far more human illness-days than it would prevent: the estimated human BENEFIT:RISK health ratio for human health impacts of continued animal antibiotic use exceeds 1,000:1 in many cases. This conclusion is driven by a hypothesized causal sequence in which withdrawing animal antibiotic use increases illnesses rates in animals, microbial loads in servings from the affected animals, and hence human health risks. This potentially important aspect of human health risk assessment for animal antibiotics has not previously been quantified.  相似文献   

3.
For diseases with more than one risk factor, the sum of probabilistic estimates of the number of cases caused by each individual factor may exceed the total number of cases observed, especially when uncertainties about exposure and dose response for some risk factors are high. In this study, we outline a method of bounding the fraction of lung cancer fatalities not due to specific well-studied causes. Such information serves as a "reality check" for estimates of the impacts of the minor risk factors, and, as such, complements the traditional risk analysis. With lung cancer as our example, we allocate portions of the observed lung cancer mortality to known causes (such as smoking, residential radon, and asbestos fibers) and describe the uncertainty surrounding those estimates. The interactions among the risk factors are also quantified, to the extent possible. We then infer an upper bound on the residual mortality due to "other" causes, using a consistency constraint on the total number of deaths, the maximum uncertainty principle, and the mathematics originally developed of imprecise probabilities.  相似文献   

4.
To develop a quantitative exposure‐response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC‐associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure‐response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA.  相似文献   

5.
The International Agency for Research on Cancer (IARC) in 2012 upgraded its hazard characterization of diesel engine exhaust (DEE) to “carcinogenic to humans.” The Diesel Exhaust in Miners Study (DEMS) cohort and nested case‐control studies of lung cancer mortality in eight U.S. nonmetal mines were influential in IARC's determination. We conducted a reanalysis of the DEMS case‐control data to evaluate its suitability for quantitative risk assessment (QRA). Our reanalysis used conditional logistic regression and adjusted for cigarette smoking in a manner similar to the original DEMS analysis. However, we included additional estimates of DEE exposure and adjustment for radon exposure. In addition to applying three DEE exposure estimates developed by DEMS, we applied six alternative estimates. Without adjusting for radon, our results were similar to those in the original DEMS analysis: all but one of the nine DEE exposure estimates showed evidence of an association between DEE exposure and lung cancer mortality, with trend slopes differing only by about a factor of two. When exposure to radon was adjusted, the evidence for a DEE effect was greatly diminished, but was still present in some analyses that utilized the three original DEMS DEE exposure estimates. A DEE effect was not observed when the six alternative DEE exposure estimates were utilized and radon was adjusted. No consistent evidence of a DEE effect was found among miners who worked only underground. This article highlights some issues that should be addressed in any use of the DEMS data in developing a QRA for DEE.  相似文献   

6.
A California Environmental Protection Agency (Cal/EPA) report concluded that a reasonable and likely explanation for the increased lung cancer rates in numerous epidemiological studies is a causal association between diesel exhaust exposure and lung cancer. A version of the present analysis, based on a retrospective study of a U.S. railroad worker cohort, provided the Cal/EPA report with some of its estimates of lung cancer risk associated with diesel exhaust. The individual data for that cohort study furnish information on age, employment, and mortality for 56,000 workers over 22 years. Related studies provide information on exposure concentrations. Other analyses of the original cohort data reported finding no relation between measures of diesel exhaust and lung cancer mortality, while a Health Effects Institute report found the data unsuitable for quantitative risk assessment. None of those three works used multistage models, which this article uses in finding a likely quantitative, positive relations between lung cancer and diesel exhaust. A seven-stage model that has the last or next-to-last stage sensitive to diesel exhaust provides best estimates of increase in annual mortality rate due to each unit of concentration, for bracketing assumptions on exposure. Using relative increases of risk and multiplying by the background lung cancer mortality rates for California, the 95% upper confidence limit of the 70-year unit risks for lung cancer is estimated to be in the range 2.1 x 10(-4) (microg/m3)(-1) to 5.5 x 10(-4) (microg/m3)(-1). These risks constitute the low end of those in the Cal/EPA report and are below those reported by previous investigators whose estimates were positive using human data.  相似文献   

7.
Many models of exposure-related carcinogenesis, including traditional linearized multistage models and more recent two-stage clonal expansion (TSCE) models, belong to a family of models in which cells progress between successive stages-possibly undergoing proliferation at some stages-at rates that may depend (usually linearly) on biologically effective doses. Biologically effective doses, in turn, may depend nonlinearly on administered doses, due to PBPK nonlinearities. This article provides an exact mathematical analysis of the expected number of cells in the last ("malignant") stage of such a "multistage clonal expansion" (MSCE) model as a function of dose rate and age. The solution displays symmetries such that several distinct sets of parameter values provide identical fits to all epidemiological data, make identical predictions about the effects on risk of changes in exposure levels or timing, and yet make significantly different predictions about the effects on risk of changes in the composition of exposure that affect the pharmacodynamic dose-response relation. Several different predictions for the effects of such an intervention (such as reducing carcinogenic constituents of an exposure) that acts on only one or a few stages of the carcinogenic process may be equally consistent with all preintervention epidemiological data. This is an example of nonunique identifiability of model parameters and predictions from data. The new results on nonunique model identifiability presented here show that the effects of an intervention on changing age-specific cancer risks in an MSCE model can be either large or small, but that which is the case cannot be predicted from preintervention epidemiological data and knowledge of biological effects of the intervention alone. Rather, biological data that identify which rate parameters hold for which specific stages are required to obtain unambiguous predictions. From epidemiological data alone, only a set of equally likely alternative predictions can be made for the effects on risk of such interventions.  相似文献   

8.
Heterogeneity of Cancer Risk Due to Stochastic Effects   总被引:3,自引:0,他引:3  
Persons with exactly the same genetic background, behavior, environment, etc. may have differences in cancer risk due to a different number of cells on the way to malignancy. These differences are estimated quantitatively by using the two-stage clonal expansion model. For liver cancer the estimated relative risk for persons without intermediate cells at age 40 is less than 10% when compared to the risk of the total population, while the top 0.1% risk group has a more than 100-fold risk compared to the population. The risk of the 1% percentile in risk is more than 100-fold of the risk of the more than 95% persons without intermediate cells. The number of intermediate (premalignant) cells in the risk groups cannot be calculated from incidence data only because they depend strongly on a nonidentifiable parameter. But under plausible assumptions, less than about 1,000 intermediate cells are present at age 40 even in high-risk persons.  相似文献   

9.
Following a comprehensive evaluation of the health risks of radon, the U.S. National Research Council (US-NRC) concluded that the radon inside the homes of U.S. residents is an important cause of lung cancer. To assess lung cancer risks associated with radon exposure in Canadian homes, we apply the new (US-NRC) techniques, tailoring assumptions to the Canadian context. A two-dimensional uncertainty analysis is used to provide both population-based (population attributable risk, PAR; excess lifetime risk ratio, ELRR; and life-years lost, LYL) and individual-based (ELRR and LYL) estimates. Our primary results obtained for the Canadian population reveal mean estimates for ELRR, PAR, and LYL are 0.08, 8%, and 0.10 years, respectively. Results are also available and stratified by smoking status (ever versus never). Conveniently, the three indices (ELRR, PAR, and LYL) reveal similar output uncertainty (geometric standard deviation, GSD approximately 1.3), and in the case of ELRR and LYL, comparable variability and uncertainty combined (GSD approximately 4.2). Simplifying relationships are identified between ELRR, LYL, PAR, and the age-specific excess rate ratio (ERR), which suggest a way to scale results from one population to another. This insight is applied in scaling our baseline results to obtain gender-specific estimates, as well as in simplifying and illuminating sensitivity analysis.  相似文献   

10.
In a series of articles and a health-risk assessment report, scientists at the CIIT Hamner Institutes developed a model (CIIT model) for estimating respiratory cancer risk due to inhaled formaldehyde within a conceptual framework incorporating extensive mechanistic information and advanced computational methods at the toxicokinetic and toxicodynamic levels. Several regulatory bodies have utilized predictions from this model; on the other hand, upon detailed evaluation the California EPA has decided against doing so. In this article, we study the CIIT model to identify key biological and statistical uncertainties that need careful evaluation if such two-stage clonal expansion models are to be used for extrapolation of cancer risk from animal bioassays to human exposure. Broadly, these issues pertain to the use and interpretation of experimental labeling index and tumor data, the evaluation and biological interpretation of estimated parameters, and uncertainties in model specification, in particular that of initiated cells. We also identify key uncertainties in the scale-up of the CIIT model to humans, focusing on assumptions underlying model parameters for cell replication rates and formaldehyde-induced mutation. We discuss uncertainties in identifying parameter values in the model used to estimate and extrapolate DNA protein cross-link levels. The authors of the CIIT modeling endeavor characterized their human risk estimates as "conservative in the face of modeling uncertainties." The uncertainties discussed in this article indicate that such a claim is premature.  相似文献   

11.
Multistage modeling incorporating a time-dependent exposure pattern is applied to lung cancer mortality data obtained from a cohort of 2802 arsenic-exposed copper-smelter workers who worked 1 or more years during the period 1940-1964 at a copper smelter at Tacoma, Washington. The workers were followed for death through 1976. There were 100 deaths due to lung cancer during the follow-up period. Exposures to air arsenic levels measured in micrograms/m3 were estimated from departmental air arsenic and workers urinary arsenic measurements. Relationships of different temporal variables with excess death rates are examined to judge qualitatively the implications of the multistage cancer process. Analysis to date indicates a late stage effect of arsenic although an additional early stage effect cannot be ruled out.  相似文献   

12.
We conducted a regional‐scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN‐RRM) to a case study of the South River, Virginia mercury‐contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor–multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN‐RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape.  相似文献   

13.
Cross-Cultural Differences in Risk Perception: A Model-Based Approach   总被引:4,自引:0,他引:4  
The present study assessed cross-cultural differences in the perception of financial risks. Students at large universities in Hong Kong, Taiwan, the Netherlands, and the U.S., as well as a group of Taiwanese security analysts rated the riskiness of a set of monetary lotteries. Risk judgments differed with nationality, but not with occupation (students vs. security analysts) and were modeled by the Conjoint Expected Risk (CER) model.(1) Consistent with cultural differences in country uncertainty avoidance,(2) CER model parameters of respondents from the two Western countries differed from those of respondents from the two countries with Chinese cultural roots: The risk judgments of respondents from Hong Kong and Taiwan were more sensitive to the magnitude of potential losses and less mitigated by the probability of positive outcomes.  相似文献   

14.
Trichloroethylene (TCE) is a widespread environmental pollutant. TCE is classified as a rodent carcinogen by the U.S. Environmental Protection Agency (EPA). Using the rodent cancer bioassay findings and estimates of metabolized dose, the EPA has estimated lifetime exposure cancer risks for humans that ingest TCE in drinking water or inhale TCE. In this study, a physiologically based pharmacokinetic (PB-PK) model for mice was used to simulate selected gavage and inhalation bioassays with TCE. Plausible dose-metrics thought to be linked with the mechanism of action for TCE carcinogenesis were selected. These dose-metrics, adjusted to reflect an average amount per day for a lifetime, were metabolism of TCE (AMET, mg/kg/day) and systemic concentration of TCA (AUCTCA, mg/L/day). These dose-metrics were then used in a linearized multistage model to estimate AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million in mice. A human PB-PK model for TCE was then used to predict TCE concentrations in drinking water and air that would provide AMET and AUCTCA values equal to the predicted mice AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million. For the dose-metrics, AMET and AUCTCA, the TCE concentrations in air were 10.0 and 0.1 ppb TCE (continuous exposure), respectively, and in water, 7 and 4 μg TCE/L, respectively.  相似文献   

15.
Ethylene oxide (EO) research has significantly increased since the 1980s, when regulatory risk assessments were last completed on the basis of the animal cancer chronic bioassays. In tandem with the new scientific understanding, there have been evolutionary changes in regulatory risk assessment guidelines, that encourage flexibility and greater use of scientific information. The results of an updated meta-analysis of the findings from 10 unique EO study cohorts from five countries, including nearly 33,000 workers, and over 800 cancers are presented, indicating that EO does not cause increased risk of cancers overall or of brain, stomach or pancreatic cancers. The findings for leukemia and non-Hodgkin's lymphoma (NHL) are inconclusive. Two studies with the requisite attributes of size, individual exposure estimates and follow up are the basis for dose-response modeling and added lifetime risk predictions under environmental and occupational exposure scenarios and a variety of plausible alternative assumptions. A point of departure analysis, with various margins of exposure, is also illustrated using human data. The two datasets produce remarkably similar leukemia added risk predictions, orders of magnitude lower than prior animal-based predictions under conservative, default assumptions, with risks on the order of 1 × 10–6 or lower for exposures in the low ppb range. Inconsistent results for lymphoid tumors, a non-standard grouping using histologic information from death certificates, are discussed. This assessment demonstrates the applicability of the current risk assessment paradigm to epidemiological data.  相似文献   

16.
《Risk analysis》2018,38(1):99-117
Risk matrices have been widely used as a risk evaluation tool in many fields due to their simplicity and intuitive nature. Designing a rating scheme, i.e., determining the number of ratings used in a risk matrix and assigning different ratings to different cells, is an essential part of risk matrix construction. However, most of the related literature has focused on applying a risk matrix to various fields, instead of researching how to design risk matrices. Based on the analysis of several current rules, we propose a new approach, namely, the sequential updating approach (SUA), to design the rating scheme of a risk matrix in a reliable way. In this article, we propose three principles and a rating algorithm based on these principles. The three principles, namely, adjusted weak consistency, consistent internality, and continuous screening, characterize a good rating scheme. The resulting rating scheme has been proven to be unique. A global rating algorithm is then proposed to create the design that satisfies the three principles. We then explore the performance of the SUA. An illustrative application is first given to explain the feasibility of our approach. The sensitivity analysis shows that our method captures a resolution‐reliability tradeoff for decisionmakers in choosing an appropriate rating scheme for a risk matrix. Finally, we compare the designs based on the SUA and Cox's axioms, highlighting the advantages of the SUA.  相似文献   

17.
When high-dose tumor data are extrapolated to low doses, it is typically assumed that the dose of a carcinogen delivered to target cells is proportional to the dose administered to test animals, even at exposure levels below the experimental range. Since pharmacokinetic data are becoming available that in some cases question the validity of this assumption, risk assessors must decide whether to maintain the standard assumption. A pilot study of formaldehyde is reported that was undertaken to demonstrate how expert scientific judgment can help guide a controversial risk assessment where pharmacokinetic data are considered inconclusive. Eight experts on pharmacokinetic data were selected by a formal procedure, and each was interviewed personally using a structured interview protocol. The results suggest that expert scientific opinion is polarized in this case, a situation that risk assessors can respond to with a range of risk characterizations considered biologically plausible by the experts. Convergence of expert opinion is likely in this case of several specific research strategies ar executed in a competent fashion. Elicitation of expert scientific judgment is a promising vehicle for evaluating the quality of pharmacokinetic data, expressing uncertainty in risk assessment, and fashioning a research agenda that offers possible forging of scientific consensus.  相似文献   

18.
The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial lifting of the MBM ban might be considered. The objective of this study was to assess the BSE risk for the Netherlands if MBM derived from animals fit for human consumption, i.e., category 3 MBM, would be used in nonruminant feed. A stochastic simulation model was constructed that calculates (1) the probability that infectivity of undetected BSE-infected cows ends up with calves and (2) the quantity of infectivity ( Qinf ) consumed by calves in case of such an incident. Three pathways were considered via which infectivity can reach cattle: (1) cross-contamination in the feed mill, (2) cross-contamination on the primary farm, and (3) pasture contamination. Model calculations indicate that the overall probability that infectivity ends up with calves is 3.2%. In most such incidents the Qinf is extremely small (median = 6.5 × 10−12 ID50; mean = 1.8 × 10−4 ID50), corresponding to an average probability of 1.3 × 10−4 that an incident results in ≥1 new BSE infections. Cross-contamination in the feed mill is the most risky pathway. Combining model results with Dutch BSE prevalence estimates for the coming years, it can be concluded that the BSE risk of using category 3 MBM derived from Dutch cattle in nonruminant feed is very low.  相似文献   

19.
Some analysts suggest that discussing uncertainties in health risk assessments might reduce citizens'perceptions of risk and increase their respect for the risk-assessing agency. We tested this assumption with simulated news stories varying simple displays of uncertainty (e.g., a range of risk estimates, with and without graphics). Subjects from Eugene, Oregon, read one story each, and then answered a questionnaire. Three studies tested between 180 and 272 subjects each. Two focus groups obtained more detailed responses to these stories. The results suggested that (1) people are unfamiliar with uncertainty in risk assessments and in science; (2) people may recognize uncertainty when it is presented simply; (3) graphics may help people recognize uncertainty; (4) reactions to the environmental problems in the stories seemed affected less by presentation of uncertainty than by general risk attitudes and perceptions; (5) agency discussion of uncertainty in risk estimates may signal agency honesty and agency incompetence for some people; and (6) people seem to see lower risk estimates (10-6, as opposed to 10-3) as less credible. These findings, if confirmed, would have important implications for risk communication.  相似文献   

20.
The current approach to health risk assessment of toxic waste sites in the U.S. may lead to considerable expenditure of resources without any meaningful reduction in population exposure. Risk assessment methods used generally ignore background exposures and consider only incremental risk estimates for maximally exposed individuals. Such risk estimates do not address true public health risks to which background exposures also contribute. The purpose of this paper is to recommend a new approach to risk assessment and risk management concerning toxic waste sites. Under this new approach, which we have called public health risk assessment, chemical substances would be classified into a level of concern based on the potential health risks associated with typical national and regional background exposures. Site assessment would then be based on the level of concern for the particular pollutants involved and the potential contribution of site contaminants to typical background human exposures. While various problems can be foreseen with this approach, the key advantage is that resources would be allocated to reduce the most important sources of human exposure, and site remediation decisions could be simplified by focussing on exposure assessment rather than questionable risk extrapolations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号