首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Shi  Yushu  Laud  Purushottam  Neuner  Joan 《Lifetime data analysis》2021,27(1):156-176

In this paper, we first propose a dependent Dirichlet process (DDP) model using a mixture of Weibull models with each mixture component resembling a Cox model for survival data. We then build a Dirichlet process mixture model for competing risks data without regression covariates. Next we extend this model to a DDP model for competing risks regression data by using a multiplicative covariate effect on subdistribution hazards in the mixture components. Though built on proportional hazards (or subdistribution hazards) models, the proposed nonparametric Bayesian regression models do not require the assumption of constant hazard (or subdistribution hazard) ratio. An external time-dependent covariate is also considered in the survival model. After describing the model, we discuss how both cause-specific and subdistribution hazard ratios can be estimated from the same nonparametric Bayesian model for competing risks regression. For use with the regression models proposed, we introduce an omnibus prior that is suitable when little external information is available about covariate effects. Finally we compare the models’ performance with existing methods through simulations. We also illustrate the proposed competing risks regression model with data from a breast cancer study. An R package “DPWeibull” implementing all of the proposed methods is available at CRAN.

  相似文献   

2.
In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause-specific hazards. Another recent approach is to directly model the cumulative incidence by a proportional model (Fine and Gray, J Am Stat Assoc 94:496–509, 1999), and then obtain direct estimates of how covariates influences the cumulative incidence curve. We consider a simple and flexible class of regression models that is easy to fit and contains the Fine–Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy to use. The test is constructive in the sense that it shows exactly where non-proportionality is present. We illustrate our methods to a bone marrow transplant data from the Center for International Blood and Marrow Transplant Research (CIBMTR). Through this data example we demonstrate the use of the flexible regression models to analyze competing risks data when non-proportionality is present in the data.  相似文献   

3.
A parametric dynamic survival model applied to breast cancer survival times   总被引:1,自引:0,他引:1  
Summary. Much current analysis of cancer registry data uses the semiparametric proportional hazards Cox model. In this paper, the time-dependent effect of various prognostic indicators on breast cancer survival times from the West Midlands Cancer Intelligence Unit are investigated. Using Bayesian methodology and Markov chain Monte Carlo estimation methods, we develop a parametric dynamic survival model which avoids the proportional hazards assumption. The model has close links to that developed by both Gamerman and Sinha and co-workers: the log-base-line hazard and covariate effects are piecewise constant functions, related between intervals by a simple stochastic evolution process. Here this evolution is assigned a parametric distribution, with a variance that is further included as a hyperparameter. To avoid problems of convergence within the Gibbs sampler, we consider using a reparameterization. It is found that, for some of the prognostic indicators considered, the estimated effects change with increasing follow-up time. In general those prognostic indicators which are thought to be representative of the most hazardous groups (late-staged tumour and oldest age group) have a declining effect.  相似文献   

4.
This paper considers estimation and prediction in the Aalen additive hazards model in the case where the covariate vector is high-dimensional such as gene expression measurements. Some form of dimension reduction of the covariate space is needed to obtain useful statistical analyses. We study the partial least squares regression method. It turns out that it is naturally adapted to this setting via the so-called Krylov sequence. The resulting PLS estimator is shown to be consistent provided that the number of terms included is taken to be equal to the number of relevant components in the regression model. A standard PLS algorithm can also be constructed, but it turns out that the resulting predictor can only be related to the original covariates via time-dependent coefficients. The methods are applied to a breast cancer data set with gene expression recordings and to the well known primary biliary cirrhosis clinical data.  相似文献   

5.
With competing risks data, one often needs to assess the treatment and covariate effects on the cumulative incidence function. Fine and Gray proposed a proportional hazards regression model for the subdistribution of a competing risk with the assumption that the censoring distribution and the covariates are independent. Covariate‐dependent censoring sometimes occurs in medical studies. In this paper, we study the proportional hazards regression model for the subdistribution of a competing risk with proper adjustments for covariate‐dependent censoring. We consider a covariate‐adjusted weight function by fitting the Cox model for the censoring distribution and using the predictive probability for each individual. Our simulation study shows that the covariate‐adjusted weight estimator is basically unbiased when the censoring time depends on the covariates, and the covariate‐adjusted weight approach works well for the variance estimator as well. We illustrate our methods with bone marrow transplant data from the Center for International Blood and Marrow Transplant Research. Here, cancer relapse and death in complete remission are two competing risks.  相似文献   

6.
Proportional hazard models for survival data, even though popular and numerically handy, suffer from the restrictive assumption that covariate effects are constant over survival time. A number of tests have been proposed to check this assumption. This paper contributes to this area by employing local estimates allowing to fit hazard models in which covariate effects are smoothly varying with time. A formal test is derived to check for proportional hazards against smooth hazards as alternative. The test proves to possess omnibus power in that it is powerful against arbitrary but smooth alternatives. Comparative simulations and two data examples accompany the presentation. Extensions are provided to multiple covariate settings, where the focus of interest is to decide which of the covariate effects vary with time.  相似文献   

7.
Murrayand Tsiatis (1996) described a weighted survival estimate thatincorporates prognostic time-dependent covariate informationto increase the efficiency of estimation. We propose a test statisticbased on the statistic of Pepe and Fleming (1989, 1991) thatincorporates these weighted survival estimates. As in Pepe andFleming, the test is an integrated weighted difference of twoestimated survival curves. This test has been shown to be effectiveat detecting survival differences in crossing hazards settingswhere the logrank test performs poorly. This method uses stratifiedlongitudinal covariate information to get more precise estimatesof the underlying survival curves when there is censored informationand this leads to more powerful tests. Another important featureof the test is that it remains valid when informative censoringis captured by the incorporated covariate. In this case, thePepe-Fleming statistic is known to be biased and should not beused. These methods could be useful in clinical trials with heavycensoring that include collection over time of covariates, suchas laboratory measurements, that are prognostic of subsequentsurvival or capture information related to censoring.  相似文献   

8.
This paper discusses methods for clustering a continuous covariate in a survival analysis model. The advantages of using a categorical covariate defined from discretizing a continuous covariate (via clustering) is (i) enhanced interpretability of the covariate''s impact on survival and (ii) relaxing model assumptions that are usually required for survival models, such as the proportional hazards model. Simulations and an example are provided to illustrate the methods.  相似文献   

9.
In survival analysis, time-dependent covariates are usually present as longitudinal data collected periodically and measured with error. The longitudinal data can be assumed to follow a linear mixed effect model and Cox regression models may be used for modelling of survival events. The hazard rate of survival times depends on the underlying time-dependent covariate measured with error, which may be described by random effects. Most existing methods proposed for such models assume a parametric distribution assumption on the random effects and specify a normally distributed error term for the linear mixed effect model. These assumptions may not be always valid in practice. In this article, we propose a new likelihood method for Cox regression models with error-contaminated time-dependent covariates. The proposed method does not require any parametric distribution assumption on random effects and random errors. Asymptotic properties for parameter estimators are provided. Simulation results show that under certain situations the proposed methods are more efficient than the existing methods.  相似文献   

10.
The analysis of failure time data often involves two strong assumptions. The proportional hazards assumption postulates that hazard rates corresponding to different levels of explanatory variables are proportional. The additive effects assumption specifies that the effect associated with a particular explanatory variable does not depend on the levels of other explanatory variables. A hierarchical Bayes model is presented, under which both assumptions are relaxed. In particular, time-dependent covariate effects are explicitly modelled, and the additivity of effects is relaxed through the use of a modified neural network structure. The hierarchical nature of the model is useful in that it parsimoniously penalizes violations of the two assumptions, with the strength of the penalty being determined by the data.  相似文献   

11.
Tree-structured methods for exploratory data analysis have previously been extended to right-censored survival data. We further extend these methods to allow for truncation and time-dependent covariates. We apply the new methods to a data set on incubation times of acquired immunodeficiency syndrome (AIDS), using calendar time as a time-dependent covariate. Contrary to expectation, we find that rates of progression to AIDS appear to be faster after August 1989 than before.  相似文献   

12.
This article presents methods for testing covariate effect in the Cox proportional hazards model based on Kullback–Leibler divergence and Renyi's information measure. Renyi's measure is referred to as the information divergence of order γ (γ ≠ 1) between two distributions. In the limiting case γ → 1, Renyi's measure becomes Kullback–Leibler divergence. In our case, the distributions correspond to the baseline and one possibly due to a covariate effect. Our proposed statistics are simple transformations of the parameter vector in the Cox proportional hazards model, and are compared with the Wald, likelihood ratio and score tests that are widely used in practice. Finally, the methods are illustrated using two real-life data sets.  相似文献   

13.
Lee  Chi Hyun  Ning  Jing  Shen  Yu 《Lifetime data analysis》2019,25(1):79-96

Length-biased data are frequently encountered in prevalent cohort studies. Many statistical methods have been developed to estimate the covariate effects on the survival outcomes arising from such data while properly adjusting for length-biased sampling. Among them, regression methods based on the proportional hazards model have been widely adopted. However, little work has focused on checking the proportional hazards model assumptions with length-biased data, which is essential to ensure the validity of inference. In this article, we propose a statistical tool for testing the assumed functional form of covariates and the proportional hazards assumption graphically and analytically under the setting of length-biased sampling, through a general class of multiparameter stochastic processes. The finite sample performance is examined through simulation studies, and the proposed methods are illustrated with the data from a cohort study of dementia in Canada.

  相似文献   

14.
Investigators often gather longitudinal data to assess changes in responses over time within subjects and to relate these changes to within‐subject changes in predictors. Missing data are common in such studies and predictors can be correlated with subject‐specific effects. Maximum likelihood methods for generalized linear mixed models provide consistent estimates when the data are ‘missing at random’ (MAR) but can produce inconsistent estimates in settings where the random effects are correlated with one of the predictors. On the other hand, conditional maximum likelihood methods (and closely related maximum likelihood methods that partition covariates into between‐ and within‐cluster components) provide consistent estimation when random effects are correlated with predictors but can produce inconsistent covariate effect estimates when data are MAR. Using theory, simulation studies, and fits to example data this paper shows that decomposition methods using complete covariate information produce consistent estimates. In some practical cases these methods, that ostensibly require complete covariate information, actually only involve the observed covariates. These results offer an easy‐to‐use approach to simultaneously protect against bias from both cluster‐level confounding and MAR missingness in assessments of change.  相似文献   

15.
Survival data obtained from prevalent cohort study designs are often subject to length-biased sampling. Frequentist methods including estimating equation approaches, as well as full likelihood methods, are available for assessing covariate effects on survival from such data. Bayesian methods allow a perspective of probability interpretation for the parameters of interest, and may easily provide the predictive distribution for future observations while incorporating weak prior knowledge on the baseline hazard function. There is lack of Bayesian methods for analyzing length-biased data. In this paper, we propose Bayesian methods for analyzing length-biased data under a proportional hazards model. The prior distribution for the cumulative hazard function is specified semiparametrically using I-Splines. Bayesian conditional and full likelihood approaches are developed for analyzing simulated and real data.  相似文献   

16.
The Cox regression model is often used when analyzing survival data as it provides a convenient way of summarizing covariate effects in terms of relative risks. The proportional hazards assumption may not hold, however. A typical violation of the assumption is time-changing covariate effects. Under such scenarios one may use more flexible models but the results from such models may be complicated to communicate and it is desirable to have simple measures of a treatment effect, say. In this paper we focus on the odds-of-concordance measure that was recently studied by Schemper et al. (Stat Med 28:2473?C2489, 2009). They suggested to estimate this measure using weighted Cox regression (WCR). Although WCR may work in many scenarios no formal proof can be established. We suggest an alternative estimator of the odds-of-concordance measure based on the Aalen additive hazards model. In contrast to the WCR, one may derive the large sample properties for this estimator making formal inference possible. The estimator also allows for additional covariate effects.  相似文献   

17.
Survival studies usually collect on each participant, both duration until some terminal event and repeated measures of a time-dependent covariate. Such a covariate is referred to as an internal time-dependent covariate. Usually, some subjects drop out of the study before occurence of the terminal event of interest. One may then wish to evaluate the relationship between time to dropout and the internal covariate. The Cox model is a standard framework for that purpose. Here, we address this problem in situations where the value of the covariate at dropout is unobserved. We suggest a joint model which combines a first-order Markov model for the longitudinaly measured covariate with a time-dependent Cox model for the dropout process. We consider maximum likelihood estimation in this model and show how estimation can be carried out via the EM-algorithm. We state that the suggested joint model may have applications in the context of longitudinal data with nonignorable dropout. Indeed, it can be viewed as generalizing Diggle and Kenward's model (1994) to situations where dropout may occur at any point in time and may be censored. Hence we apply both models and compare their results on a data set concerning longitudinal measurements among patients in a cancer clinical trial.  相似文献   

18.
In this article, we propose a general class of partially linear transformation models for recurrent gap time data, which extends the linear transformation models by incorporating non linear covariate effects and includes the partially linear proportional hazards and the partially linear proportional odds models as special cases. Both global and local estimating equations are developed to estimate the parametric and non parametric covariate effects, and the asymptotic properties of the resulting estimators are established. The finite-sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a clinic study on chronic granulomatous disease is provided.  相似文献   

19.
The use of the Cox proportional hazards regression model is wide-spread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.  相似文献   

20.
Two-component mixture cure rate model is popular in cure rate data analysis with the proportional hazards and accelerated failure time (AFT) models being the major competitors for modelling the latency component. [Wang, L., Du, P., and Liang, H. (2012), ‘Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components’, Biometrics, 68, 726–735] first proposed a nonparametric mixture cure rate model where the latency component assumes proportional hazards with nonparametric covariate effects in the relative risk. Here we consider a mixture cure rate model where the latency component assumes AFTs with nonparametric covariate effects in the acceleration factor. Besides the more direct physical interpretation than the proportional hazards, our model has an additional scalar parameter which adds more complication to the computational algorithm as well as the asymptotic theory. We develop a penalised EM algorithm for estimation together with confidence intervals derived from the Louis formula. Asymptotic convergence rates of the parameter estimates are established. Simulations and the application to a melanoma study shows the advantages of our new method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号