首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Let [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} denote the best linear unbiased estimators of a given vector of parametric functions \varveck = \varvecKb{\varvec{\kappa} = \varvec{K\beta}} in the general linear models M = {\varvecy, \varvecX\varvecb, s2\varvecV}{{\mathcal M} = \{\varvec{y},\, \varvec{X\varvec{\beta}},\, \sigma^2\varvec{V}\}} and Mr = {\varvecy, \varvecX\varvecb | \varvecR \varvecb = \varvecr, s2\varvecV}{{\mathcal M}_r = \{\varvec{y},\, \varvec{X}\varvec{\beta} \mid \varvec{R} \varvec{\beta} = \varvec{r},\, \sigma^2\varvec{V}\}}, respectively. A bound for the Euclidean distance between [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} is expressed by the spectral distance between the dispersion matrices of the two estimators, and the difference between sums of squared errors evaluated in the model M{{\mathcal M}} and sub-restricted model Mr*{{\mathcal M}_r^*} containing an essential part of the restrictions \varvecR\varvecb = \varvecr{\varvec{R}\varvec{\beta} = \varvec{r}} with respect to estimating \varveck{\varvec{\kappa}}.  相似文献   

2.
How to improve the fit of Archimedean copulas by means of transforms   总被引:1,自引:1,他引:0  
The selection of copulas is an important aspect of dependence modeling issues. In many practical applications, only a limited number of copulas is tested and the copula with the best result for a goodness-of-fit test is chosen, which, however, does not always lead to the best possible fit. In this paper we develop a practical and logical method for improving the goodness-of-fit of a particular Archimedean copula by means of transforms. In order to do this, we introduce concordance invariant transforms which can also be tail dependence preserving, based on an analysis on the λ-function, l = \fracjj¢{\lambda=\frac{\varphi}{\varphi'}}, where j{\varphi} is the Archimedean generator. The methodology is applied to the data set studied in Cook and Johnson (J R Stat Soc B 43:210–218, 1981) and Genest and Rivest (J Am Stat Assoc 88:1043–1043, 1993), where we improve the fit of the Frank copula and obtain statistically significant results.  相似文献   

3.
Given an orthogonal model
${{\bf \lambda}}=\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i$
an L model
${{\bf y}}={\bf L}\left(\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i\right)+{\bf e}$
is obtained, and the only restriction is the linear independency of the column vectors of matrix L. Special cases of the L models correspond to blockwise diagonal matrices L = D(L 1, . . . , L c ). In multiple regression designs this matrix will be of the form
${\bf L}={\bf D}(\check{{\bf X}}_1,\ldots,\check{{\bf X}}_{c})$
with \({\check{{\bf X}}_j, j=1,\ldots,c}\) the model matrices of the individual regressions, while the original model will have fixed effects. In this way, we overcome the usual restriction of requiring all regressions to have the same model matrix.
  相似文献   

4.
In this paper, we propose two SUR type estimators based on combining the SUR ridge regression and the restricted least squares methods. In the sequel these estimators are designated as the restricted ridge Liu estimator and the restricted ridge HK estimator (see Liu in Commun Statist Thoery Methods 22(2):393–402, 1993; Sarkar in Commun Statist A 21:1987–2000, 1992). The study has been made using Monte Carlo techniques, (1,000 replications), under certain conditions where a number of factors that may effect their performance have been varied. The performance of the proposed and some of the existing estimators are evaluated by means of the TMSE and the PR criteria. Our results indicate that the proposed SUR restricted ridge estimators based on K SUR, K Sratio, K Mratio and [(K)\ddot]{\ddot{K}} produced smaller TMSE and/or PR values than the remaining estimators. In contrast with other ridge estimators, components of [(K)\ddot]{\ddot{K}} are defined in terms of the eigenvalues of X* X*{X^{{\ast^{\prime}}} X^{\rm \ast}} and all lie in the open interval (0, 1).  相似文献   

5.
Arnold and Stahlecker (Stat Pap 44:107–115, 2003) considered the prediction of future values of the dependent variable in the linear regression model with a relative squared error and deterministic disturbances. They found an explicit form for a minimax linear affine solution d* of that problem. In the paper we generalize this result proving that the decision rule d* is also minimax when the class D{\mathcal{D}} of possible predictors of the dependent variable is unrestricted. Then we show that d* remains minimax in D{\mathcal{D}} when the disturbances are random with the mean vector zero and the known positive definite covariance matrix.  相似文献   

6.
In this paper we consider the inferential aspect of the nonparametric estimation of a conditional function , where X t,m represents the vector containing the m conditioning lagged values of the series. Here is an arbitrary measurable function. The local polynomial estimator of order p is used for the estimation of the function g, and of its partial derivatives up to a total order p. We consider α-mixing processes, and we propose the use of a particular resampling method, the local polynomial bootstrap, for the approximation of the sampling distribution of the estimator. After analyzing the consistency of the proposed method, we present a simulation study which gives evidence of its finite sample behaviour.  相似文献   

7.
The general mixed linear model can be written y =  + Zu + e, where β is a vector of fixed effects, u is a vector of random effects and e is a vector of random errors. In this note, we mainly aim at investigating the general necessary and sufficient conditions under which the best linear unbiased estimator for \varvec r(\varvec l, \varvec m) = \varvec l\varvec ¢\varvec b+\varvec m\varvec ¢\varvec u{\varvec \varrho}({\varvec l}, {\varvec m}) = {\varvec l}{\varvec '}{\varvec \beta}+{\varvec m}{\varvec '}{\varvec u} is also optimal under the misspecified model. In addition, we offer approximate conclusions in some special situations including a random regression model.  相似文献   

8.
We propose an evidence synthesis approach through a degradation model to estimate causal influences of physiological factors on myocardial infarction (MI) and coronary heart disease (CHD). For instance several studies give incidences of MI and CHD for different age strata, other studies give relative or absolute risks for strata of main risk factors of MI or CHD. Evidence synthesis of several studies allows incorporating these disparate pieces of information into a single model. For doing this we need to develop a sufficiently general dynamical model; we also need to estimate the distribution of explanatory factors in the population. We develop a degradation model for both MI and CHD using a Brownian motion with drift, and the drift is modeled as a function of indicators of obesity, lipid profile, inflammation and blood pressure. Conditionally on these factors the times to MI or CHD have inverse Gaussian ( ${\mathcal{IG}}$ ) distributions. The results we want to fit are generally not conditional on all the factors and thus we need marginal distributions of the time of occurrence of MI and CHD; this leads us to manipulate the inverse Gaussian normal distribution ( ${\mathcal{IGN}}$ ) (an ${\mathcal{IG}}$ whose drift parameter has a normal distribution). Another possible model arises if a factor modifies the threshold. This led us to define an extension of ${\mathcal{IGN}}$ obtained when both drift and threshold parameters have normal distributions. We applied the model to results published in five important studies of MI and CHD and their risk factors. The fit of the model using the evidence synthesis approach was satisfactory and the effects of the four risk factors were highly significant.  相似文献   

9.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

10.
Essential graphs and largest chain graphs are well-established graphical representations of equivalence classes of directed acyclic graphs and chain graphs respectively, especially useful in the context of model selection. Recently, the notion of a labelled block ordering of vertices was introduced as a flexible tool for specifying subfamilies of chain graphs. In particular, both the family of directed acyclic graphs and the family of “unconstrained” chain graphs can be specified in this way, for the appropriate choice of . The family of chain graphs identified by a labelled block ordering of vertices is partitioned into equivalence classes each represented by means of a -essential graph. In this paper, we introduce a topological ordering of meta-arrows and use this concept to devise an efficient procedure for the construction of -essential graphs. In this way we also provide an efficient procedure for the construction of both largest chain graphs and essential graphs. The key feature of the proposed procedure is that every meta-arrow needs to be processed only once.  相似文献   

11.
The mixture of Rayleigh random variables X 1and X 2 are identified in terms of relations between the conditional expectation of ( X2:22 -X1:22)r{\left( {X_{2:2}^2 -X_{1:2}^2}\right)^{r}} given X 1:2 (or X2:22k{X_{2:2}^{2k}} given X1:2,"kr){X_{1:2},\forall k\leq r)} and hazard rate function of the distribution, where X 1:2 and X 2:2 denote the corresponding order statistics, r is a positive integer. In addition, we also mention some related theorems to characterize the mixtures of Rayleigh distributions. Finally, we also give an application to Multi-Hit models of carcinogenesis (Parallel Systems) and a simulated example is used to illustrate our results.  相似文献   

12.
For estimating an unknown parameter θ, we introduce and motivate the use of balanced loss functions of the form Lr, w, d0(q, d)=wr(d0, d)+ (1-w) r(q, d){L_{\rho, \omega, \delta_0}(\theta, \delta)=\omega \rho(\delta_0, \delta)+ (1-\omega) \rho(\theta, \delta)}, as well as the weighted version q(q) Lr, w, d0(q, d){q(\theta) L_{\rho, \omega, \delta_0}(\theta, \delta)}, where ρ(θ, δ) is an arbitrary loss function, δ 0 is a chosen a priori “target” estimator of q, w ? [0,1){\theta, \omega \in[0,1)}, and q(·) is a positive weight function. we develop Bayesian estimators under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω > 0 by relating such estimators to Bayesian solutions under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω = 0. Illustrations are given for various choices of ρ, such as absolute value, entropy, linex, and squared error type losses. Finally, under various robust Bayesian analysis criteria including posterior regret gamma-minimaxity, conditional gamma-minimaxity, and most stable, we establish explicit connections between optimal actions derived under balanced and unbalanced losses.  相似文献   

13.
R. Göb 《Statistical Papers》1992,33(1):273-277
In elementary probability theory, as a result of a limiting process the probabilities of aBi(n, p) binomial distribution are approximated by the probabilities of aPo(np) Poisson distribution. Accordingly, in statistical quality control the binomial operating characteristic function \(\mathcal{L}_{n,c} (p)\) is approximated by the Poisson operating characteristic function \(\mathcal{F}_{n,c} (p)\) . The inequality \(\mathcal{L}_{n + 1,c + 1} (p) > \mathcal{L}_{n,c} (p)\) forp∈(0;1) is evident from the interpretation of \(\mathcal{L}_{n + 1,c + 1} (p)\) , \(\mathcal{L}_{n,c} (p)\) as probabilities of accepting a lot. It is shown that the Poisson approximation \(\mathcal{F}_{n,c} (p)\) preserves this essential feature of the binomial operating characteristic function, i.e. that an analogous inequality holds for the Poisson operating characteristic function, too.  相似文献   

14.
15.
Let U, V and W be independent random variables, U and V having a gamma distribution with respective shape parameters a and b, and W having a non-central gamma distribution with shape and non-centrality parameters c and δ, respectively. Define X = U/(U + W) and Y = V/(V + W). Clearly, X and Y are correlated each having a non-central beta type 1 distribution, X ~ NCB1 (a,c;d){X \sim {\rm NCB1} (a,c;\delta)} and Y ~ NCB1 (b,c;d){Y \sim {\rm NCB1} (b,c;\delta)} . In this article we derive the joint probability density function of X and Y and study its properties.  相似文献   

16.
In this paper we consider an acceptance-rejection (AR) sampler based on deterministic driver sequences. We prove that the discrepancy of an N element sample set generated in this way is bounded by \(\mathcal {O} (N^{-2/3}\log N)\), provided that the target density is twice continuously differentiable with non-vanishing curvature and the AR sampler uses the driver sequence \(\mathcal {K}_M= \{( j \alpha , j \beta ) ~~ mod~~1 \mid j = 1,\ldots ,M\},\) where \(\alpha ,\beta \) are real algebraic numbers such that \(1,\alpha ,\beta \) is a basis of a number field over \(\mathbb {Q}\) of degree 3. For the driver sequence \(\mathcal {F}_k= \{ ({j}/{F_k}, \{{jF_{k-1}}/{F_k}\} ) \mid j=1,\ldots , F_k\},\) where \(F_k\) is the k-th Fibonacci number and \(\{x\}=x-\lfloor x \rfloor \) is the fractional part of a non-negative real number x, we can remove the \(\log \) factor to improve the convergence rate to \(\mathcal {O}(N^{-2/3})\), where again N is the number of samples we accepted. We also introduce a criterion for measuring the goodness of driver sequences. The proposed approach is numerically tested by calculating the star-discrepancy of samples generated for some target densities using \(\mathcal {K}_M\) and \(\mathcal {F}_k\) as driver sequences. These results confirm that achieving a convergence rate beyond \(N^{-1/2}\) is possible in practice using \(\mathcal {K}_M\) and \(\mathcal {F}_k\) as driver sequences in the acceptance-rejection sampler.  相似文献   

17.
Let Z 1, Z 2, . . . be a sequence of independent Bernoulli trials with constant success and failure probabilities p = Pr(Z t  = 1) and q = Pr(Z t  = 0) = 1 − p, respectively, t = 1, 2, . . . . For any given integer k ≥ 2 we consider the patterns E1{\mathcal{E}_{1}}: two successes are separated by at most k−2 failures, E2{\mathcal{E}_{2}}: two successes are separated by exactly k −2 failures, and E3{\mathcal{E}_{3}} : two successes are separated by at least k − 2 failures. Denote by Nn,k(i){ N_{n,k}^{(i)}} (respectively Mn,k(i){M_{n,k}^{(i)}}) the number of occurrences of the pattern Ei{\mathcal{E}_{i}} , i = 1, 2, 3, in Z 1, Z 2, . . . , Z n when the non-overlapping (respectively overlapping) counting scheme for runs and patterns is employed. Also, let Tr,k(i){T_{r,k}^{(i)}} (resp. Wr,k(i)){W_{r,k}^{(i)})} be the waiting time for the rth occurrence of the pattern Ei{\mathcal{E}_{i}}, i = 1, 2, 3, in Z 1, Z 2, . . . according to the non-overlapping (resp. overlapping) counting scheme. In this article we conduct a systematic study of Nn,k(i){N_{n,k}^{(i)}}, Mn,k(i){M_{n,k}^{(i)}}, Tr,k(i){T_{r,k}^{(i)}} and Wr,k(i){W_{r,k}^{(i)}} (i = 1, 2, 3) obtaining exact formulae, explicit or recursive, for their probability generating functions, probability mass functions and moments. An application is given.  相似文献   

18.
In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.  相似文献   

19.
Let (X1, X2, Y1, Y2) be a four dimensional random variable having the joint probability density function f(x1, x2, y1, y2). In this paper we consider the problem of estimating the regression function \({{E[(_{Y_2 }^{Y_1 } )} \mathord{\left/ {\vphantom {{E[(_{Y_2 }^{Y_1 } )} {_{X_2 = X_2 }^{X_1 = X_1 } }}} \right. \kern-0em} {_{X_2 = X_2 }^{X_1 = X_1 } }}]\) on the basis of a random sample of size n. We have proved that under certain regularity conditions the kernel estimate of this regression function is uniformly strongly consistent. We have also shown that under certain conditions the estimate is asymptotically normally distributed.  相似文献   

20.
We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither ${\sqrt{n}}We establish the limiting distributions for empirical estimators of the coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long memory linear processes. We show that these estimators, contrary to the case of short memory, are neither ?n{\sqrt{n}}-consistent nor asymptotically normal. The normalizations needed to obtain the limiting distributions depend on the long memory parameter d. A direct consequence is that if data are long memory then testing normality with the Jarque–Bera test by using the chi-squared critical values is not valid. Therefore, statistical inference based on skewness, kurtosis, and the Jarque–Bera normality test, needs a rescaling of the corresponding statistics and computing new critical values of their nonstandard limiting distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号