首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose bivariate Weibull regression model with frailty in which dependence is generated by a gamma or positive stable or power variance function distribution. We assume that the bivariate survival data follows bivariate Weibull of Hanagal (Econ Qual Control 19:83–90, 2004; Econ Qual Control 20:143–150, 2005a; Stat Pap 47:137–148, 2006a; Stat Methods, 2006b). There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows known frailty distribution. These are the situations which motivate to study this particular model. David D. Hanagal is on leave from Department of Statistics, University of Pune, Pune 411007, India.  相似文献   

2.
We propose bivariate Weibull regression model with heterogeneity (frailty or random effect) which is generated by Weibull distribution. We assume that the bivariate survival data follow bivariate Weibull of Hanagal (Econ Qual Control 19:83–90, 2004). There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows a known frailty distribution. These are the situations which motivate to study this particular model. We propose two-stage maximum likelihood estimation for hierarchical likelihood in the proposed model. We present a small simulation study to compare these estimates with the true value of the parameters and it is observed that these estimates are very close to the true values of the parameters.  相似文献   

3.
In this article, we consider shared frailty model with inverse Gaussian distribution as frailty distribution and log-logistic distribution (LLD) as baseline distribution for bivariate survival times. We fit this model to three real-life bivariate survival data sets. The problem of analyzing and estimating parameters of shared inverse Gaussian frailty is the interest of this article and then compare the results with shared gamma frailty model under the same baseline for considered three data sets. Data are analyzed using Bayesian approach to the analysis of clustered survival data in which there is a dependence of failure time observations within the same group. The variance component estimation provides the estimated dispersion of the random effects. We carried out a test for frailty (or heterogeneity) using Bayes factor. Model comparison is made using information criteria and Bayes factor. We observed that the shared inverse Gaussian frailty model with LLD as baseline is the better fit for all three bivariate data sets.  相似文献   

4.
We propose frailty regression models in mixture distributions and assume the distribution of frailty as gamma or positive stable or power variance function distribution. We consider Weibull mixture as an example. There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows a known frailty distribution. These are the situations which motivate to study this particular model.  相似文献   

5.
Heterogeneity in lifetime data may be modelled by multiplying an individual's hazard by an unobserved frailty. We test for the presence of frailty of this kind in univariate and bivariate data with Weibull distributed lifetimes, using statistics based on the ordered Cox–Snell residuals from the null model of no frailty. The form of the statistics is suggested by outlier testing in the gamma distribution. We find through simulation that the sum of the k largest or k smallest order statistics, for suitably chosen k, provides a powerful test when the frailty distribution is assumed to be gamma or positive stable, respectively. We provide recommended values of k for sample sizes up to 100 and simple formulae for estimated critical values for tests at the 5% level.  相似文献   

6.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data) the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this article, we introduce the gamma correlated frailty models with two different baseline distributions namely, the generalized log logistic, and the generalized Weibull. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. Also we apply these models to a real life bivariate survival dataset related to the kidney infection data and a better model is suggested for the data.  相似文献   

7.
Shared frailty models are often used to model heterogeneity in survival analysis. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, four shared frailty models with frailty distribution gamma, inverse Gaussian, compound Poisson, and compound negative binomial with exponential power as baseline distribution are proposed. These models are fitted using Markov Chain Monte Carlo methods. These models are illustrated with a real life bivariate survival data set of McGilchrist and Aisbett (1991) related to kidney infection, and the best model is suggested for the data using different model comparison criteria.  相似文献   

8.
In this article, the proportional hazard model with Weibull frailty, which is outside the range of the exponential family, is used for analysing the right-censored longitudinal survival data. Complex multidimensional integrals are avoided by using hierarchical likelihood to estimate the regression parameters and to predict the realizations of random effects. The adjusted profile hierarchical likelihood is adopted to estimate the parameters in frailty distribution, during which the first- and second-order methods are used. The simulation studies indicate that the regression-parameter estimates in the Weibull frailty model are accurate, which is similar to the gamma frailty and lognormal frailty models. Two published data sets are used for illustration.  相似文献   

9.
In this paper, we introduce the shared gamma frailty models with two different baseline distributions namely, the generalized log-logistic and the generalized Weibull. We introduce the Bayesian estimation procedure to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. We apply these models to a real-life bivariate survival data set of McGilchrist and Aisbett related to the kidney infection data and a better model is suggested for the data.  相似文献   

10.
The median service lifetime of respirator safety devices produced by different manufacturers is determined using frailty models to account for unobserved differences in manufacturing processes and raw materials. The gamma and positive stable frailty distributions are used to obtain survival distribution estimates when the baseline hazard is assumed to be Weibull. Frailty distributions are compared using laboratory test data of the failure times for 104 respirator cartridges produced by 10 different manufacturers tested with three different challenge agents. Likelihood ratio tests indicate that both frailty models provide a significant improvement over a Weibull model assuming independence. Results are compared to fixed effects approaches for analysis of this data.  相似文献   

11.
Abstract

Frailty models are used in survival analysis to account for unobserved heterogeneity in individual risks to disease and death. To analyze bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), shared frailty models were suggested. Shared frailty models are frequently used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor(frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we introduce shared gamma frailty models with reversed hazard rate. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply the proposed model to the Australian twin data set.  相似文献   

12.
In this article, results for some well-known families such as Pareto IV, generalized logistic, generalized gamma, double generalized gamma, generalized normal, inverse gamma, and Weibull, and their related families via the links between entropy, variance, Fisher information, and analog of the Fisher information, are derived.  相似文献   

13.
Copulas and frailty models are important tools to model bivariate survival data. Equivalence between Archimedean copula models and shared frailty models, e.g. between the Clayton-Oakes copula model and the shared gamma frailty model, has often been claimed in the literature. In this note we show that, in both the models, there is indeed a well-known equivalence between the copula functions; the modeling of the marginal survival functions, however, is quite different. The latter fact leads to different joint survival functions.  相似文献   

14.
We decompose the score statistic for testing for shared finite variance frailty in multivariate lifetime data into marginal and covariance-based terms. The null properties of the covariance-based statistic are derived in the context of parametric lifetime models. Its non-null properties are estimated using simulation and compared with those of the score test and two likelihood ratio tests when the underlying lifetime distribution is Weibull. Some examples are used to illustrate the covariance-based test. A case is made for using the covariance-based statistic as a simple diagnostic procedure for shared frailty in a parametric exploratory analysis of multivariate lifetime data and a link to the bivariate Clayton–Oakes copula model is shown.  相似文献   

15.
A new model is proposed for the joint distribution of paired survival times generated from clinical trials and certain reliability settings. The new model can be considered an extension to the bivariate exponential models studied in the literature. Here, a more flexible bivariate Weibull model will be derived, and two exact parametric tests for testing the equality of marginal survival distributions are developed.  相似文献   

16.
In this article, we develop a Bayesian approach for the estimation of two cure correlated frailty models that have been extended to the cure frailty models introduced by Yin [34]. We used the two different type of frailty with bivariate log-normal distribution instead of gamma distribution. A likelihood function was constructed based on a piecewise exponential distribution function. The model parameters were estimated by the Markov chain Monte Carlo method. The comparison of models is based on the Cox correlated frailty model with log-normal distribution. A real data set of bilateral corneal graft rejection was used to compare these models. The results of this data, based on deviance information criteria, showed the advantage of the proposed models.  相似文献   

17.
Because of limitations of the univariate frailty model in analysis of multivariate survival data, a bivariate frailty model is introduced for the analysis of bivariate survival data. This provides tremendous flexibility especially in allowing negative associations between subjects within the same cluster. The approach involves incorporating into the model two possibly correlated frailties for each cluster. The bivariate lognormal distribution is used as the frailty distribution. The model is then generalized to multivariate survival data with two distinguished groups and also to alternating process data. A modified EM algorithm is developed with no requirement of specification of the baseline hazards. The estimators are generalized maximum likelihood estimators with subject-specific interpretation. The model is applied to a mental health study on evaluation of health policy effects for inpatient psychiatric care.  相似文献   

18.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in the individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data), the shared frailty models were suggested. In this article, we introduce the shared gamma frailty models with the reversed hazard rate. We develop the Bayesian estimation procedure using the Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We apply the model to a real life bivariate survival dataset.  相似文献   

19.
The unknown or unobservable risk factors in the survival analysis cause heterogeneity between individuals. Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times, the shared frailty models were suggested. The most common shared frailty model is a model in which frailty act multiplicatively on the hazard function. In this paper, we introduce the shared gamma frailty model and the inverse Gaussian frailty model with the reversed hazard rate. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.  相似文献   

20.
In this paper, we discuss the bivariate Birnbaum-Saunders accelerated lifetime model, in which we have modeled the dependence structure of bivariate survival data through the use of frailty models. Specifically, we propose the bivariate model Birnbaum-Saunders with the following frailty distributions: gamma, positive stable and logarithmic series. We present a study of inference and diagnostic analysis for the proposed model, more concisely, are proposed a diagnostic analysis based in local influence and residual analysis to assess the fit model, as well as, to detect influential observations. In this regard, we derived the normal curvatures of local influence under different perturbation schemes and we performed some simulation studies for assessing the potential of residuals to detect misspecification in the systematic component, the presence in the stochastic component of the model and to detect outliers. Finally, we apply the methodology studied to real data set from recurrence in times of infections of 38 kidney patients using a portable dialysis machine, we analyzed these data considering independence within the pairs and using the bivariate Birnbaum-Saunders accelerated lifetime model, so that we could make a comparison and verify the importance of modeling dependence within the times of infection associated with the same patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号