首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the reliability of a system is discussed when the strength of the system and the stress imposed on it are independent, non-identical exponentiated Pareto distributed random variables. Different point estimations and interval estimations are proposed. The point estimators obtained are maximum likelihood, uniformly minimum variance unbiased and Bayesian estimators. The interval estimations obtained are approximate, exact, bootstrap-p and bootstrap-t confidence intervals and Bayesian credible interval. Different methods and the corresponding confidence intervals are compared using Monte-carlo simulations.  相似文献   

2.
In this paper, we consider the estimation reliability in multicomponent stress-strength (MSS) model when both the stress and strengths are drawn from Topp-Leone (TL) distribution. The maximum likelihood (ML) and Bayesian methods are used in the estimation procedure. Bayesian estimates are obtained by using Lindley’s approximation and Gibbs sampling methods, since they cannot be obtained in explicit form in the context of TL. The asymptotic confidence intervals are constructed based on the ML estimators. The Bayesian credible intervals are also constructed using Gibbs sampling. The reliability estimates are compared via an extensive Monte-Carlo simulation study. Finally, a real data set is analysed for illustrative purposes.  相似文献   

3.
In this paper, we consider the estimation of the stress–strength parameter R=P(Y<X) when X and Y are independent and both are modified Weibull distributions with the common two shape parameters but different scale parameters. The Markov Chain Monte Carlo sampling method is used for posterior inference of the reliability of the stress–strength model. The maximum-likelihood estimator of R and its asymptotic distribution are obtained. Based on the asymptotic distribution, the confidence interval of R can be obtained using the delta method. We also propose a bootstrap confidence interval of R. The Bayesian estimators with balanced loss function, using informative and non-informative priors, are derived. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulations.  相似文献   

4.
In this paper, based on progressively Type-II censored samples, the problem of estimation of multicomponent stress–strength reliability under generalized half-normal (GHN) distribution is considered. The reliability of a k-component stress-strength system is estimated when both stress and strength variates are assumed to have a GHN distribution with various cases of same and different shape and scale parameters. Different methods such as the maximum likelihood estimates (MLEs) and Bayes estimation are discussed. The expectation maximization algorithm and approximate maximum likelihood methods are proposed to compute the MLE of reliability. The Lindley's approximation method, as well as Metropolis–Hastings algorithm, are applied to compute Bayes estimates. The performance of the proposed procedures is also demonstrated via a Monte Carlo simulation study and an illustrative example.  相似文献   

5.
The stress–strength model has attracted a great deal of attention in reliability analysis, and it has been studied under various modeling assumptions. In this article, the stress–strength reliability is studied for both single unit and multicomponent systems when stress and strength distributions are of phase type. Phase-type distributions, besides their analytical tractability, are a versatile tool for modeling a wide range of real life systems/processes. In particular, matrix-based expressions are obtained for the stress–strength reliability, and mean residual strength for an operating system. The results are illustrated for Erlang-type stress–strength distributions for a single unit system and a system having a general coherent structure. An example on the comparison of two multi-state units in stress–strength ordering is also presented.  相似文献   

6.
In many industrial and natural phenomena, we need the probability that a component is smaller than the other component. Under a stress–strength model, this is reliability of an item. Under independent setup, there are different approaches for the estimation of such reliability. Here, estimation is considered under the dependent case. Under bi-variate setup uniformly minimum variance unbiased estimator is obtained. Also comparison with available estimator based on Maximum Likelihood Estimate (MLE) is done through Mean Square Error (MSE) and bias. Also these are compared by computing L1 distance between their distribution functions. From this idea and numerical computations, UMVUE appears to be good.  相似文献   

7.
In the stress–strength models, analysis is based on the reliability of the system where the system is either in operational state or in failure state. Ery?lmaz (2011 Ery?lmaz, S. (2011). A new perspective to stress–strength models. Ann. Inst. Stat. Math. 63(1):101115.[Crossref], [Web of Science ®] [Google Scholar]) introduced the stress–strength reliability in a different framework assigning more than two states to the system depending on the difference between strength and stress values. Unlike Ery?lmaz (2011 Ery?lmaz, S. (2011). A new perspective to stress–strength models. Ann. Inst. Stat. Math. 63(1):101115.[Crossref], [Web of Science ®] [Google Scholar]), the present article deals with the ratio of the strength and stress values when the stress and strength follow independent exponential distributions. This article presents in detail the estimation aspect of the multistate stress–strength reliability function.  相似文献   

8.
In this article, the estimation problem of the multicomponent stress–strength reliability parameter is considered where the stress and the strength systems have arbitrary fixed numbers of independent and non-identical parallel components. It is assumed that the distribution functions of the stress and the strength components satisfy the proportional reversed hazard rate model. The study is done in more details when the baseline distributions are exponential. Maximum likelihood and uniformly minimum variance unbiased estimators are obtained and compared. Also, Bayes and empirical Bayes estimators are discussed and Monte Carlo simulations are carried out to compare their performances.  相似文献   

9.
We address the problem of robust inference about the stress–strength reliability parameter R = P(X < Y), where X and Y are taken to be independent random variables. Indeed, although classical likelihood based procedures for inference on R are available, it is well-known that they can be badly affected by mild departures from model assumptions, regarding both stress and strength data. The proposed robust method relies on the theory of bounded influence M-estimators. We obtain large-sample test statistics with the standard asymptotic distribution by means of delta-method asymptotics. The finite sample behavior of these tests is investigated by some numerical studies, when both X and Y are independent exponential or normal random variables. An illustrative application in a regression setting is also discussed.  相似文献   

10.
In this paper, a small-sample asymptotic method is proposed for higher order inference in the stress–strength reliability model, R=P(Y<X), where X and Y are distributed independently as Burr-type X distributions. In a departure from the current literature, we allow the scale parameters of the two distributions to differ, and the likelihood-based third-order inference procedure is applied to obtain inference for R. The difficulty of the implementation of the method is in obtaining the the constrained maximum likelihood estimates (MLE). A penalized likelihood method is proposed to handle the numerical complications of maximizing the constrained likelihood model. The proposed procedures are illustrated using a sample of carbon fibre strength data. Our results from simulation studies comparing the coverage probabilities of the proposed small-sample asymptotic method with some existing large-sample asymptotic methods show that the proposed method is very accurate even when the sample sizes are small.  相似文献   

11.
The paper is inspired by the stress?Cstrength models in the reliability literature, in which given the strength (Y) and the stress (X) of a component, its reliability is measured by P(X < Y). In this literature, X and Y are typically modeled as independent. Since in many applications such an assumption might not be realistic, we propose a copula approach in order to take into account the dependence between X and Y. We then apply a copula-based approach to the measurement of household financial fragility. Specifically, we define as financially fragile those households whose yearly consumption (X) is higher than income (Y), so that P(X > Y) is the measure of interest and X and Y are clearly not independent. Modeling income and consumption as non-identically Dagum distributed variables and their dependence by a Frank copula, we show that the proposed method improves the estimation of household financial fragility. Using data from the 2008 wave of the Bank of Italy??s Survey on Household Income and Wealth we point out that neglecting the existing dependence in fact overestimates the actual household fragility.  相似文献   

12.
The problem of interval estimation of the stress–strength reliability involving two independent Weibull distributions is considered. An interval estimation procedure based on the generalized variable (GV) approach is given when the shape parameters are unknown and arbitrary. The coverage probabilities of the GV approach are evaluated by Monte Carlo simulation. Simulation studies show that the proposed generalized variable approach is very satisfactory even for small samples. For the case of equal shape parameter, it is shown that the generalized confidence limits are exact. Some available asymptotic methods for the case of equal shape parameter are described and their coverage probabilities are evaluated using Monte Carlo simulation. Simulation studies indicate that no asymptotic approach based on the likelihood method is satisfactory even for large samples. Applicability of the GV approach for censored samples is also discussed. The results are illustrated using an example.  相似文献   

13.
Let X and Y be independent random variables distributed as generalized Lindley distribution type 5 (GLD5). This article deals with the estimation of the stress–strength parameter R = P(Y < X), which plays an important role in reliability analysis. For this purpose, the maximum likelihood and the uniformly minimum variance unbiased estimators are presented in the explicit form. Moreover, considering Arnold and Strauss’ bivariate Gamma distribution as an informative prior and Jeffreys’ as noninformative prior, the Bayes estimators are derived. Various bootstrap confidence intervals are also proposed and, finally, the presented methods are compared using a simulation study.  相似文献   

14.
15.
16.
This article deals with the Bayesian and non Bayesian estimation of multicomponent stress–strength reliability by assuming the Kumaraswamy distribution. Both stress and strength are assumed to have a Kumaraswamy distribution with common and known shape parameter. The reliability of such a system is obtained by the methods of maximum likelihood and Bayesian approach and the results are compared using Markov Chain Monte Carlo (MCMC) technique for both small and large samples. Finally, two data sets are analyzed for illustrative purposes.  相似文献   

17.
In this article, we present the analysis of head and neck cancer data using generalized inverse Lindley stress–strength reliability model. We propose Bayes estimators for estimating P(X > Y), when X and Y represent survival times of two groups of cancer patients observed under different therapies. The X and Y are assumed to be independent generalized inverse Lindley random variables with common shape parameter. Bayes estimators are obtained under the considerations of symmetric and asymmetric loss functions assuming independent gamma priors. Since posterior becomes complex and does not possess closed form expressions for Bayes estimators, Lindley’s approximation and Markov Chain Monte Carlo techniques are utilized for Bayesian computation. An extensive simulation experiment is carried out to compare the performances of Bayes estimators with the maximum likelihood estimators on the basis of simulated risks. Asymptotic, bootstrap, and Bayesian credible intervals are also computed for the P(X > Y).  相似文献   

18.
The mixture distribution models are more useful than pure distributions in modeling of heterogeneous data sets. The aim of this paper is to propose mixture of Weibull–Poisson (WP) distributions to model heterogeneous data sets for the first time. So, a powerful alternative mixture distribution is created for modeling of the heterogeneous data sets. In the study, many features of the proposed mixture of WP distributions are examined. Also, the expectation maximization (EM) algorithm is used to determine the maximum-likelihood estimates of the parameters, and the simulation study is conducted for evaluating the performance of the proposed EM scheme. Applications for two real heterogeneous data sets are given to show the flexibility and potentiality of the new mixture distribution.  相似文献   

19.
An accurate procedure is proposed to calculate approximate moments of progressive order statistics in the context of statistical inference for lifetime models. The study analyses the performance of power series expansion to approximate the moments for location and scale distributions with high precision and smaller deviations with respect to the exact values. A comparative analysis between exact and approximate methods is shown using some tables and figures. The different approximations are applied in two situations. First, we consider the problem of computing the large sample variance–covariance matrix of maximum likelihood estimators. We also use the approximations to obtain progressively censored sampling plans for log-normal distributed data. These problems illustrate that the presented procedure is highly useful to compute the moments with precision for numerous censoring patterns and, in many cases, is the only valid method because the exact calculation may not be applicable.  相似文献   

20.
Birnbaum–Saunders fatigue life distribution is an important failure model in the probability physical methods. It is more suitable for describing the life rules of fatigue failure products than common life distributions such as Weibull distribution and lognormal distribution. Besides, it is mainly applied to analytical research about fatigue failure and degradation failure of electronic product performance. The characteristic properties such as numerical characteristics and image features of density function and failure rate function are studied for generalized BS fatigue life distribution GBS(α, β, m) in this paper. Then the point estimates and approximate interval estimates of parameters are proposed for generalized BS fatigue life distribution GBS(α, β, m), and the precision of estimates are investigated by Monte Carlo simulations. Finally, when the scale parameter satisfies inverse power law model, the failure distribution model is given for the products of two-parameter BS fatigue life distribution BS(α, β) under progressive stress accelerated life test according to the time conversion idea of famous Nelson assumption, and then the points estimates of parameters are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号