首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
In some statistical process control applications, quality of a process or product is characterized by a relationship between two or more variables which is referred to as profile. In many practical situations, a profile can be modeled as a polynomial regression. In this article, three methods are developed for monitoring polynomial profiles in Phase I. Their performance is evaluated using power criterion. Furthermore, a method based on likelihood ratio test is developed to identify the location of shifts. Numerical simulation is used to evaluate the performance of the developed method.  相似文献   

2.
In this article, a maximum likelihood estimator is derived in the generalized linear model-based regression profiles under monotonic change in Phase II. The performance of the proposed estimator is comprehensively investigated through some special cases, and compared with estimators under step change and drift. The results show that the proposed estimator has better performance in small and medium shifts under different increasing changes. Finally, the applicability of the proposed estimator is illustrated using a real case.  相似文献   

3.
ABSTRACT

In profile monitoring, control charts are proposed to detect unanticipated changes, and it is usually assumed that the in-control parameters are known. However, due to the characteristics of a system or process, the prespecified changes would appear in the process. Moreover, in most applications, the in-control parameters are usually unknown. To overcome these issues, we develop the zone control charts with estimated parameters to detect small shifts of these prespecified changes. The effects of estimation error have been investigated on the performance of the proposed charts. To account for the practitioner-to-practitioner variability, the expected average run length (ARL) and the standard deviation of the average run length (SDARL) is used as the performance metrics. Our results show that the estimation error results in the significant variation in the ARL distribution. Furthermore, in order to adequately reduce the variability, more phase I samples are required in terms of the SDARL metric than that in terms of the expected ARL metric. In addition, more observations on each sampled profile are suggested to improve the charts' performance, especially for small phase I sample sizes. Finally, an illustrative example is given to show the performance of the proposed zone control charts.  相似文献   

4.
ABSTRACT

A bivariate integer-valued autoregressive time series model is presented. The model structure is based on binomial thinning. The unconditional and conditional first and second moments are considered. Correlation structure of marginal processes is shown to be analogous to the ARMA(2, 1) model. Some estimation methods such as the Yule–Walker and conditional least squares are considered and the asymptotic distributions of the obtained estimators are derived. Comparison between bivariate model with binomial thinning and bivariate model with negative binomial thinning is given.  相似文献   

5.
Previous studies of statistical performance of Phase II simple linear profile approaches were reported only for the case of known profile parameters assumption. The main objective of this article is to evaluate and compare the performance of these approaches when the profile parameters are estimated from an in-control Phase I profile data set. Simulations establish that the performance of these approaches is strongly affected when the parameters are estimated compared to the known parameters case. The in-control performance of the competing approaches significantly deteriorates if estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. The results show also that some profile monitoring approaches need much larger number of Phase I profiles than other approaches to achieve the expected statistical performance. They also show that the profile monitoring approach proposed by Mahmoud et al. (2010 Mahmoud , M. A. , Morgan , J. P. , Woodall , W. H. ( 2010 ). The monitoring of simple linear regression profiles with two observations per sample . Journal of Applied Statistics 37 : 12491263 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) has generally better out-of-control run length performance than the competing approaches when the estimated parameters are used in the charts design.  相似文献   

6.
In some industrial applications, the quality of a process or product is characterized by a relationship between the response variable and one or more independent variables which is called as profile. There are many approaches for monitoring different types of profiles in the literature. Most researchers assume that the response variable follows a normal distribution. However, this assumption may be violated in many cases. The most likely situation is when the response variable follows a distribution from generalized linear models (GLMs). For example, when the response variable is the number of defects in a certain area of a product, the observations follow Poisson distribution and ignoring this fact will cause misleading results. In this paper, three methods including a T2-based method, likelihood ratio test (LRT) method and F method are developed and modified in order to be applied in monitoring GLM regression profiles in Phase I. The performance of the proposed methods is analysed and compared for the special case that the response variable follows Poisson distribution. A simulation study is done regarding the probability of the signal criterion. Results show that the LRT method performs better than two other methods and the F method performs better than the T2-based method in detecting either small or large step shifts as well as drifts. Moreover, the F method performs better than the other two methods, and the LRT method performs poor in comparison with the F and T2-based methods in detecting outliers. A real case, in which the size and number of agglomerates ejected from a volcano in successive days form the GLM profile, is illustrated and the proposed methods are applied to determine whether the number of agglomerates of each size is under statistical control or not. Results showed that the proposed methods could handle the mentioned situation and distinguish the out-of-control conditions.  相似文献   

7.
文章提出了一种基于加权似然比检验的阶段二监控线性曲线的控制图,称为WLRT图,并通过平均运行长度来衡量控制图的性能表现。模拟结果表明,WLRT图对于线性曲线的截距、斜率、标准差的变化及截距和斜率同时变化都具有很好的检测能力。通过与其他几种控制图的性能比较,得出WLRT图能较快地发现过程变化,而且设计简单、操作方便。  相似文献   

8.
In profile monitoring, some methods have been developed to detect the unspecified changes in the profiles. However, detecting changes away from the “normal” profile toward one of several prespecified “bad” profiles is one possible and challenging purpose. In this article, control charts with supplementary runs rules are developed to detect the prespecified changes in linear profiles. A control chart is first developed based on the Student's t-statistic in t test, and two runs rules are then supplemented to this chart, respectively. Simulation studies show that the proposed control schemes are effective and stable. Moreover, the control schemes are better than the existing alternative charts when the number of observations per sample profile is large. Finally, two illustrative examples indicate that our proposed schemes are effective and easy to be implemented.  相似文献   

9.
The standard deviation of the average run length (SDARL) is an important performance metric in studying the performance of control charts with estimated in-control parameters. Only a few studies in the literature, however, have considered this measure when evaluating control chart performance. The current study aims at comparing the in-control performance of three phase II simple linear profile monitoring approaches; namely, those of Kang and Albin (2000), Kim et al. (2003), and Mahmoud et al. (2010). The comparison is performed under the assumption of estimated parameters using the SDARL metric. In general, the simulation results of the current study show that the method of Kim et al. (2003) has better overall statistical performance than the competing methods in terms of SDARL values. Some of the recommended approaches based solely on the usual average run length properties can have poor SDARL performance.  相似文献   

10.
This article considers the Phase I analysis of data when the quality of a process or product is characterized by a multiple linear regression model. This is usually referred to as the analysis of linear profiles in the statistical quality control literature. The literature includes several approaches for the analysis of simple linear regression profiles. Little work, however, has been done in the analysis of multiple linear regression profiles. This article proposes a new approach for the analysis of Phase I multiple linear regression profiles. Using this approach, regardless of the number of explanatory variables used to describe it, the profile response is monitored using only three parameters, an intercept, a slope, and a variance. Using simulation, the performance of the proposed method is compared to that of the existing methods for monitoring multiple linear profiles data in terms of the probability of a signal. The advantage of the proposed method over the existing methods is greatly improved detection of changes in the process parameters of linear profiles with high-dimensional space. The article also proposes useful diagnostic aids based on F-statistics to help in identifying the source of profile variation and the locations of out-of-control samples. Finally, the use of multiple linear profile methods is illustrated by a data set from a calibration application at National Aeronautics and Space Administration (NASA) Langley Research Center.  相似文献   

11.
Clustered (longitudinal) count data arise in many bio-statistical practices in which a number of repeated count responses are observed on a number of individuals. The repeated observations may also represent counts over time from a number of individuals. One important problem that arises in practice is to test homogeneity within clusters (individuals) and between clusters (individuals). As data within clusters are observations of repeated responses, the count data may be correlated and/or over-dispersed. For over-dispersed count data with unknown over-dispersion parameter we derive two score tests by assuming a random intercept model within the framework of (i) the negative binomial mixed effects model and (ii) the double extended quasi-likelihood mixed effects model (Lee and Nelder, 2001). These two statistics are much simpler than a statistic derived by Jacqmin-Gadda and Commenges (1995) under the framework of the over-dispersed generalized linear model. The first statistic takes the over-dispersion more directly into the model and therefore is expected to do well when the model assumptions are satisfied and the other statistic is expected to be robust. Simulations show superior level property of the statistics derived under the negative binomial and double extended quasi-likelihood model assumptions. A data set is analyzed and a discussion is given.  相似文献   

12.
ABSTRACT

Nonhomogeneous Poisson processes (NHPP) provide many models for hardware and software reliability analysis. In order to get an appropriate NHPP model, goodness-of-Fit (GOF for short) tests have to be carried out. For the power-law processes, lots of GOF tests have been developed. For other NHPP models, only the Conditional Probability Integral Transformation (CPIT) test has been proposed. However, the CPIT test is less powerful and cannot be applied to some NHPP models. This article proposes a general GOF test based on the Laplace statistic for a large class of NHPP models with intensity functions of the form αλ(t, β). The simulation results show that this test is more powerful than CPIT test.  相似文献   

13.
    
The paper establishes the asymptotic distribution of the conditional maximum likelihood estimator for integer-valued generalized autoregressive conditional heteroskedastic (INGARCH) processes of conditional negative binomial distributions, with the number of successes in the definition of the negative binomial distribution being assumed to be known, when the true parameter is at the boundary of the parameter space. Based on the result, coefficient nullity tests are developed for model simplification. The proposed tests are investigated through a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号