共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivariate data with a sequential or temporal structure occur in various fields of study. The hidden Markov model (HMM) provides an attractive framework for modeling long-term persistence in areas of pattern recognition through the extension of independent and identically distributed mixture models. Unlike in typical mixture models, the heterogeneity of data is represented by hidden Markov states. This article extends the HMM to a multi-site or multivariate case by taking a hierarchical Bayesian approach. This extension has many advantages over a single-site HMM. For example, it can provide more information for identifying the structure of the HMM than a single-site analysis. We evaluate the proposed approach by exploiting a spatial correlation that depends on the distance between sites. 相似文献
2.
This article proposes nonparametric Bayesian approaches to monotone function estimation. This approach uses a hierarchical Bayes framework and a characterization of stick-breaking process that allows unconstrained estimation of the monotone function. In order to avoid the limitation of parametric modeling, a general class of prior distributions, called stick-breaking priors, is considered. It accommodates much more flexible forms and can easily deal with skewness, multimodality, etc., of the dependent variable response. The proposed approach is incorporated to model the catch ratio based on automatic weather station (AWS) data. 相似文献
3.
Consider a set of real valued observations collected over time. We pro¬pose a simple hidden Markow model for these realizations in which the the predicted distribution of the next future observation given the past is easily computed. The hidden or unobservable set of parameters is assumed to have a Markov structure of a special type. The model is quite flexible and can be used to incorporate different types of prior information in straightforward and sensible ways. 相似文献
4.
The hidden Markov model regression (HMMR) has been popularly used in many fields such as gene expression and activity recognition. However, the traditional HMMR requires the strong linearity assumption for the emission model. In this article, we propose a hidden Markov model with non-parametric regression (HMM-NR), where the mean and variance of emission model are unknown smooth functions. The new semiparametric model might greatly reduce the modeling bias and thus enhance the applicability of the traditional hidden Markov model regression. We propose an estimation procedure for the transition probability matrix and the non-parametric mean and variance functions by combining the ideas of the EM algorithm and the kernel regression. Simulation studies and a real data set application are used to demonstrate the effectiveness of the new estimation procedure. 相似文献
5.
C. P. Robert T. Rydén & D. M. Titterington 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2000,62(1):57-75
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism. 相似文献
6.
7.
Agostino Nobile 《Statistics and Computing》1998,8(3):229-242
Bayesian inference for the multinomial probit model, using the Gibbs sampler with data augmentation, has been recently considered by some authors. The present paper introduces a modification of the sampling technique, by defining a hybrid Markov chain in which, after each Gibbs sampling cycle, a Metropolis step is carried out along a direction of constant likelihood. Examples with simulated data sets motivate and illustrate the new technique. A proof of the ergodicity of the hybrid Markov chain is also given. 相似文献
8.
L. M. Berliner N. Cressie K. Jezek Y. Kim C. Q. Lam C. J. van der Veen 《Statistical Methods and Applications》2008,17(2):145-165
Studies of the behaviors of glaciers, ice sheets, and ice streams rely heavily on both observations and physical models. Data acquired via remote sensing provide critical information on geometry and movement of ice over large sections of Antarctica and Greenland. However, uncertainties are present in both the observations and the models. Hence, there is a need for combining these information sources in a fashion that incorporates uncertainty and quantifies its impact on conclusions. We present a hierarchical Bayesian approach to modeling ice-stream velocities incorporating physical models and observations regarding velocity, ice thickness, and surface elevation from the North East Ice Stream in Greenland. The Bayesian model leads to interesting issues in model assessment and computation. 相似文献
9.
Kai Yang 《统计学通讯:理论与方法》2017,46(22):11214-11227
In this article, we develop a Bayesian analysis in autoregressive model with explanatory variables. When σ2 is known, we consider a normal prior and give the Bayesian estimator for the regression coefficients of the model. For the case σ2 is unknown, another Bayesian estimator is given for all unknown parameters under a conjugate prior. Bayesian model selection problem is also being considered under the double-exponential priors. By the convergence of ρ-mixing sequence, the consistency and asymptotic normality of the Bayesian estimators of the regression coefficients are proved. Simulation results indicate that our Bayesian estimators are not strongly dependent on the priors, and are robust. 相似文献
10.
Maura Mezzetti Joseph G. Ibrahim Frédéric Y. Bois Louise M. Ryan Long Ngo Thomas J. Smith 《Journal of the Royal Statistical Society. Series C, Applied statistics》2003,52(3):291-305
Summary. We propose a Bayesian model for physiologically based pharmacokinetics of 1,3-butadiene (BD). BD is classified as a suspected human carcinogen and exposure to it is common, especially through cigarette smoke as well as in urban settings. The main aim of the methodology and analysis that are presented here is to quantify variability in the rates of BD metabolism by human subjects. A three-compartmental model is described, together with informative prior distributions for the population parameters, all of which represent real physiological variables. The model is described in detail along with the meanings and interpretations of the associated parameters. A four-compartment model is also given for comparison. Markov chain Monte Carlo methods are described for fitting the model proposed. The model is fitted to toxicokinetic data obtained from 133 healthy subjects (males and females) from the four major racial groups in the USA, with ages ranging from 19 to 62 years. Subjects were exposed to 2 parts per million of BD for 20 min through a face mask by using a computer-controlled exposure and respiratory monitoring system. Stratification by ethnic group results in major changes in the physiological parameters. Sex and age were also tested but not found to have a significant effect. 相似文献
11.
The problem of nonparametric drift estimation for ergodic diffusions is studied from a Bayesian perspective. In particular, Gaussian process priors are exhibited that yield optimal contraction rates if the drift function belongs to a smoothness class. 相似文献
12.
J. P. Hughes P Guttorp & S. P. Charles 《Journal of the Royal Statistical Society. Series C, Applied statistics》1999,48(1):15-30
A non-homogeneous hidden Markov model is proposed for relating precipitation occurrences at multiple rain-gauge stations to broad scale atmospheric circulation patterns (the so-called 'downscaling problem'). We model a 15-year sequence of winter data from 30 rain stations in south-western Australia. The first 10 years of data are used for model development and the remaining 5 years are used for model evaluation. The fitted model accurately reproduces the observed rainfall statistics in the reserved data despite a shift in atmospheric circulation (and, consequently, rainfall) between the two periods. The fitted model also provides some useful insights into the processes driving rainfall in this region. 相似文献
13.
《Journal of Statistical Computation and Simulation》2012,82(5):503-512
In this paper, we study the robust estimation for the order of hidden Markov model (HMM) based on a penalized minimum density power divergence estimator, which is obtained by utilizing the finite mixture marginal distribution of HMM. For this task, we adopt the locally conic parametrization method used in [D. Dacunha-Castelle and E. Gassiate, Testing in locally conic models and application to mixture models. ESAIM Probab. Stat. (1997), pp. 285–317; D. Dacunha-Castelle and E. Gassiate, Testing the order of a model using locally conic parametrization: population mixtures and stationary arma processes, Ann. Statist. 27 (1999), pp. 1178–1209; T. Lee and S. Lee, Robust and consistent estimation of the order of finite mixture models based on the minimizing a density power divergence estimator, Metrika 68 (2008), pp. 365–390] to avoid the difficulties that arise in handling mixture marginal models, such as the non-identifiability of the parameter space and the singularity problem with the asymptotic variance. We verify that the estimated order is consistent and simulation results are provided for illustration. 相似文献
14.
In the Bayesian analysis of a multiple-recapture census, different diffuse prior distributions can lead to markedly different inferences about the population size N. Through consideration of the Fisher information matrix it is shown that the number of captures in each sample typically provides little information about N. This suggests that if there is no prior information about capture probabilities, then knowledge of just the sample sizes and not the number of recaptures should leave the distribution of Nunchanged. A prior model that has this property is identified and the posterior distribution is examined. In particular, asymptotic estimates of the posterior mean and variance are derived. Differences between Bayesian and classical point and interval estimators are illustrated through examples. 相似文献
15.
Merrilee Hurn Peter J. Green Fahimah Al-Awadhi 《Journal of the Royal Statistical Society. Series C, Applied statistics》2008,57(4):487-504
Summary. The Sloan digital sky survey is an extremely large astronomical survey that is conducted with the intention of mapping more than a quarter of the sky. Among the data that it is generating are spectroscopic and photometric measurements, both containing information about the red shift of galaxies. The former are precise and easy to interpret but expensive to gather; the latter are far cheaper but correspondingly more difficult to interpret. Recently, Csabai and co-workers have described various calibration techniques aiming to predict red shift from photometric measurements. We investigate what a structured Bayesian approach to the problem can add. In particular, we are interested in providing uncertainty bounds that are associated with the underlying red shifts and the classifications of the galaxies. We find that quite a generic statistical modelling approach, using for the most part standard model ingredients, can compete with much more specific custom-made and highly tuned techniques that are already available in the astronomical literature. 相似文献
16.
Bayesian analysis of correlated mixed categorical data by incorporating historical prior information
Ming-Hui Chen 《统计学通讯:理论与方法》2013,42(6):1341-1361
In this article, we develop statistical models for analysis of correlated mixed categorical (binary and ordinal) response data arising in medical and epidemi-ologic studies. There is evidence in the literature to suggest that models including correlation structure can lead to substantial improvement in precision of estimation or are more appropriate (accurate). We use a very rich class of scale mixture of multivariate normal (SMMVN) iink functions to accommodate heavy tailed distributions. In order to incorporate available historical information, we propose a unified prior elicitation scheme based on SMMVN-link models. Further, simulation-based techniques are developed to assess model adequacy. Finally, a real data example from prostate cancer studies is used to illustrate the proposed methodologies. 相似文献
17.
This paper synthesizes a global approach to both Bayesian and likelihood treatments of the estimation of the parameters of a hidden Markov model in the cases of normal and Poisson distributions. The first step of this global method is to construct a non-informative prior based on a reparameterization of the model; this prior is to be considered as a penalizing and bounding factor from a likelihood point of view. The second step takes advantage of the special structure of the posterior distribution to build up a simple Gibbs algorithm. The maximum likelihood estimator is then obtained by an iterative procedure replicating the original sample until the corresponding Bayes posterior expectation stabilizes on a local maximum of the original likelihood function. 相似文献
18.
《统计学通讯:理论与方法》2013,42(11):2163-2184
Abstract This work deals with the problem of Bayesian estimation of the transition probabilities associated with multistate Markov chain. The model is based on the Jeffreys' noninformative prior. The Bayesian estimator is approximated by means of MCMC techniques. A numerical study by simulation is done in order to compare the Bayesian estimator with the maximum likelihood estimator. 相似文献
19.
Peter Whittle 《Journal of statistical planning and inference》2005,130(1-2):49-62
Three approaches to sequential analysis are reviewed: Chernoff's development of the Wald approach, the dynamic programming analysis developed by the author some years ago and a ‘path-averaging’ approach which exploits the random-walk properties of the log-posterior under a given hypothesis. These last two approaches led to explicit determinations of the optimal decision boundary and its associated costs in the limit of a small sampling cost, for a general number of hypotheses. However, the particular interest of the path-averaging approach is that it applies also to state-estimation for a hidden Markov model, where it leads to Eq. (39), which gives an immediate indication of the effectiveness with which the different states are estimated. 相似文献
20.
In this article, we are going to study the strong laws of large numbers for countable non homogeneous hidden Markov models. First, we introduce the notion of countable non homogeneous hidden Markov models. Then, we obtain some properties for those Markov models. Finally, we establish two strong laws of large numbers for countable non homogeneous hidden Markov models. As corollaries, we obtain some known results of strong laws of large numbers for finite non homogeneous Markov chains. 相似文献