首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Data sets originating from wide range of research studies are composed of multiple variables that are correlated and of dissimilar types, primarily of count, binary/ordinal and continuous attributes. The present paper builds on the previous works on multivariate data generation and develops a framework for generating multivariate mixed data with a pre-specified correlation matrix. The generated data consist of components that are marginally count, binary, ordinal and continuous, where the count and continuous variables follow the generalized Poisson and normal distributions, respectively. The use of the generalized Poisson distribution provides a flexible mechanism which allows under- and over-dispersed count variables generally encountered in practice. A step-by-step algorithm is provided and its performance is evaluated using simulated and real-data scenarios.  相似文献   

2.
In this article, operational details of an R package MultiOrd that is designed for the generation of correlated ordinal data are described, and examples of some important functions are given. The package provides a valuable and needed tool that has been lacking for generating multivariate ordinal data.  相似文献   

3.
The present paper develops a procedure for simulating multivariate data with count and continuous variables with a pre-specified correlation matrix. The count and continuous variables are assumed to have Poisson and normal marginals, respectively. The data generation mechanism is a combination of the normal to anything principle and a newly established connection between Poisson and normal correlations in the mixture. A step-by-step algorithm is provided and its performance is evaluated using two simulated and one real-data scenarios.  相似文献   

4.
Algorithms     
Abstract

The main reason for the limited use of multivariate discrete models is the difficulty in calculating the required probabilities. The task is usually undertaken via recursive relationships which become quite computationally demanding for high dimensions and large values. The present paper discusses efficient algorithms that make use of the recurrence relationships in a manner that reduces the computational effort and thus allow for easy and cheap calculation of the probabilities. The most common multivariate discrete distribution, the multivariate Poisson distribution is treated. Real data problems are provided to motivate the use of the proposed strategies. Extensions of our results are discussed. It is shown that probabilities, for a large family of multivariate distributions, can be computed efficiently via our algorithms.  相似文献   

5.
In this paper we present Bayesian analysis of finite mixtures of multivariate Poisson distributions with an unknown number of components. The multivariate Poisson distribution can be regarded as the discrete counterpart of the multivariate normal distribution, which is suitable for modelling multivariate count data. Mixtures of multivariate Poisson distributions allow for overdispersion and for negative correlations between variables. To perform Bayesian analysis of these models we adopt a reversible jump Markov chain Monte Carlo (MCMC) algorithm with birth and death moves for updating the number of components. We present results obtained from applying our modelling approach to simulated and real data. Furthermore, we apply our approach to a problem in multivariate disease mapping, namely joint modelling of diseases with correlated counts.  相似文献   

6.
Dependent multivariate count data occur in several research studies. These data can be modelled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula-based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.  相似文献   

7.
Multivariate Poisson regression with covariance structure   总被引:1,自引:0,他引:1  
In recent years the applications of multivariate Poisson models have increased, mainly because of the gradual increase in computer performance. The multivariate Poisson model used in practice is based on a common covariance term for all the pairs of variables. This is rather restrictive and does not allow for modelling the covariance structure of the data in a flexible way. In this paper we propose inference for a multivariate Poisson model with larger structure, i.e. different covariance for each pair of variables. Maximum likelihood estimation, as well as Bayesian estimation methods are proposed. Both are based on a data augmentation scheme that reflects the multivariate reduction derivation of the joint probability function. In order to enlarge the applicability of the model we allow for covariates in the specification of both the mean and the covariance parameters. Extension to models with complete structure with many multi-way covariance terms is discussed. The method is demonstrated by analyzing a real life data set.  相似文献   

8.
An EM algorithm for multivariate Poisson distribution and related models   总被引:2,自引:0,他引:2  
Multivariate extensions of the Poisson distribution are plausible models for multivariate discrete data. The lack of estimation and inferential procedures reduces the applicability of such models. In this paper, an EM algorithm for Maximum Likelihood estimation of the parameters of the Multivariate Poisson distribution is described. The algorithm is based on the multivariate reduction technique that generates the Multivariate Poisson distribution. Illustrative examples are also provided. Extension to other models, generated via multivariate reduction, is discussed.  相似文献   

9.
A multivariate generalized Poisson regression model based on the multivariate generalized Poisson distribution is defined and studied. The regression model can be used to describe a count data with any type of dispersion. The model allows for both positive and negative correlation between any pair of the response variables. The parameters of the regression model are estimated by using the maximum likelihood method. Some test statistics are discussed, and two numerical data sets are used to illustrate the applications of the multivariate count data regression model.  相似文献   

10.
Categorical data frequently arise in applications in the Social Sciences. In such applications, the class of log-linear models, based on either a Poisson or (product) multinomial response distribution, is a flexible model class for inference and prediction. In this paper we consider the Bayesian analysis of both Poisson and multinomial log-linear models. It is often convenient to model multinomial or product multinomial data as observations of independent Poisson variables. For multinomial data, Lindley (1964) [20] showed that this approach leads to valid Bayesian posterior inferences when the prior density for the Poisson cell means factorises in a particular way. We develop this result to provide a general framework for the analysis of multinomial or product multinomial data using a Poisson log-linear model. Valid finite population inferences are also available, which can be particularly important in modelling social data. We then focus particular attention on multivariate normal prior distributions for the log-linear model parameters. Here, an improper prior distribution for certain Poisson model parameters is required for valid multinomial analysis, and we derive conditions under which the resulting posterior distribution is proper. We also consider the construction of prior distributions across models, and for model parameters, when uncertainty exists about the appropriate form of the model. We present classes of Poisson and multinomial models, invariant under certain natural groups of permutations of the cells. We demonstrate that, if prior belief concerning the model parameters is also invariant, as is the case in a ‘reference’ analysis, then the choice of prior distribution is considerably restricted. The analysis of multivariate categorical data in the form of a contingency table is considered in detail. We illustrate the methods with two examples.  相似文献   

11.
ABSTRACT

The effect of parameters estimation on profile monitoring methods has only been studied by a few researchers and only the assumption of a normal response variable has been tackled. However, in some practical situation, the normality assumption is violated and the response variable follows a discrete distribution such as Poisson. In this paper, we evaluate the effect of parameters estimation on the Phase II monitoring of Poisson regression profiles by considering two control charts, namely the Hotelling’s T2 and the multivariate exponentially weighted moving average (MEWMA) charts. Simulation studies in terms of the average run length (ARL) and the standard deviation of the run length (SDRL) are carried out to assess the effect of estimated parameters on the performance of Phase II monitoring approaches. The results reveal that both in-control and out-of-control performances of these charts are adversely affected when the regression parameters are estimated.  相似文献   

12.
Abstract

In this article, we deal with a class of discrete-time reliability models. The failures are assumed to be generated by an underlying time inhomogeneous Markov chain. The multivariate point process of failures is proved to converge to a Poisson-type process when the failures are rare. As a result, we obtain a Compound Poisson approximation of the cumulative number of failures. A rate of convergence is provided.  相似文献   

13.
Abstract

The multivariate elliptically contoured distributions provide a viable framework for modeling time-series data. It includes the multivariate normal, power exponential, t, and Cauchy distributions as special cases. For multivariate elliptically contoured autoregressive models, we derive the exact likelihood equations for the model parameters. They are closely related to the Yule-Walker equations and involve simple function of the data. The maximum likelihood estimators are obtained by alternately solving two linear systems and illustrated using the simulation data.  相似文献   

14.
Statistical process control of multi-attribute count data has received much attention with modern data-acquisition equipment and online computers. The multivariate Poisson distribution is often used to monitor multivariate attributes count data. However, little work has been done so far on under- or over-dispersed multivariate count data, which is common in many industrial processes, with positive or negative correlation. In this study, a Shewhart-type multivariate control chart is constructed to monitor such kind of data, namely the multivariate COM-Poisson (MCP) chart, based on the MCP distribution. The performance of the MCP chart is evaluated by the average run length in simulation. The proposed chart generalizes some existing multivariate attribute charts as its special cases. A real-life bivariate process and a simulated trivariate Poisson process are used to illustrate the application of the MCP chart.  相似文献   

15.
Multivariate data are present in many research areas. Its analysis is challenging when assumptions of normality are violated and the data are discrete. The Poisson discrete data can be thought of as very common discrete type, but the inflated and the doubly inflated correspondence are gaining popularity (Sengupta, Chaganty, and Sabo 2015; Lee, Jung, and Jin 2009; Agarwal, Gelfand, and Citron-Pousty 2002).

Our aim is to build a statistical model that can be tractable and used to estimate the model parameters for the multivariate doubly inflated Poisson. To keep the correlation structure, we incorporate ideas from the copula distributions. A multivariate doubly inflated Poisson distribution using Gaussian copula is introduced. Data simulation and parameter estimation algorithms are also provided. Residual checks are carried out to assess any substantial biases. The model dimensionality has been increased to test the performance of the provided estimation method. All results show high-efficiency and promising outcomes in the modeling of discrete data and particularly the doubly inflated Poisson count type data, under a novel modified algorithm.  相似文献   


16.
The Poisson–Lindley distribution is a compound discrete distribution that can be used as an alternative to other discrete distributions, like the negative binomial. This paper develops approximate one-sided and equal-tailed two-sided tolerance intervals for the Poisson–Lindley distribution. Practical applications of the Poisson–Lindley distribution frequently involve large samples, thus we utilize large-sample Wald confidence intervals in the construction of our tolerance intervals. A coverage study is presented to demonstrate the efficacy of the proposed tolerance intervals. The tolerance intervals are also demonstrated using two real data sets. The R code developed for our discussion is briefly highlighted and included in the tolerance package.  相似文献   

17.
Abstract

We propose a new multivariate extension of the inverse Gaussian distribution derived from a certain multivariate inverse relationship. First we define a multivariate extension of the inverse relationship between two sets of multivariate distributions, then define a reduced inverse relationship between two multivariate distributions. We derive the multivariate continuous distribution that has the reduced multivariate inverse relationship with a multivariate normal distribution and call it a multivariate inverse Gaussian distribution. This distribution is also characterized as the distribution of the location of a multivariate Brownian motion at some stopping time. The marginal distribution in one direction is the inverse Gaussian distribution, and the conditional distribution in the space perpendicular to this direction is a multivariate normal distribution. Mean, variance, and higher order cumulants are derived from the multivariate inverse relationship with a multivariate normal distribution. Other properties such as reproductivity and infinite divisibility are also given.  相似文献   

18.
ABSTRACT

The Poisson distribution is extended over the set of all integers. The motivation comes from the many reflected versions of the gamma distribution, the continuous analog of the Poisson distribution, defined over the entire real line. Various mathematical properties of the extended Poisson distribution are derived. Estimation procedures by the methods of moments and maximum likelihood are also derived with their performance assessed by simulation. Finally, a real data application is illustrated.  相似文献   

19.
Estimating the parameters of multivariate mixed Poisson models is an important problem in image processing applications, especially for active imaging or astronomy. The classical maximum likelihood approach cannot be used for these models since the corresponding masses cannot be expressed in a simple closed form. This paper studies a maximum pairwise likelihood approach to estimate the parameters of multivariate mixed Poisson models when the mixing distribution is a multivariate Gamma distribution. The consistency and asymptotic normality of this estimator are derived. Simulations conducted on synthetic data illustrate these results and show that the proposed estimator outperforms classical estimators based on the method of moments. An application to change detection in low-flux images is also investigated.  相似文献   

20.
The continuous extension of a discrete random variable is amongst the computational methods used for estimation of multivariate normal copula-based models with discrete margins. Its advantage is that the likelihood can be derived conveniently under the theory for copula models with continuous margins, but there has not been a clear analysis of the adequacy of this method. We investigate the asymptotic and small-sample efficiency of two variants of the method for estimating the multivariate normal copula with univariate binary, Poisson, and negative binomial regressions, and show that they lead to biased estimates for the latent correlations, and the univariate marginal parameters that are not regression coefficients. We implement a maximum simulated likelihood method, which is based on evaluating the multidimensional integrals of the likelihood with randomized quasi-Monte Carlo methods. Asymptotic and small-sample efficiency calculations show that our method is nearly as efficient as maximum likelihood for fully specified multivariate normal copula-based models. An illustrative example is given to show the use of our simulated likelihood method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号