共查询到20条相似文献,搜索用时 15 毫秒
1.
Büşra Sevinç Selma Gürler Bekir Çetintav 《Journal of Statistical Computation and Simulation》2018,88(14):2799-2810
Ranked set sampling (RSS) is an advanced sampling method which is very effective for estimating mean of the population when exact measurement of observation is difficult and/or expensive. Balanced Groups RSS (BGRSS) is one of the modification of RSS where only the lowest, the median and the largest ranked units are taken into account. Although BGRSS is advantageous and useful for some specific cases, it has strict restrictions regarding the set size which could be problematic for sampling plans. In this study, we make an improvement on BGRSS and propose a new design called Partial Groups RSS which offers a more flexible sampling plan providing the independence of the set size and sample size. Partial Groups RSS also has a cost advantage over BGRSS. We construct a Monte Carlo simulation study comparing the performance of the mean estimators of the proposed sampling design and BGRSS according to their sampling costs and mean squared errors for various type of distributions. In addition, we give a biometric data application for investigating the efficiency of Partial Groups RSS in real life applications. 相似文献
2.
《Journal of Statistical Computation and Simulation》2012,82(11):1185-1196
In this article, we consider the median ranked set sampling estimation and test of hypothesis for the mean for symmetric distributions. We suggest some alternative estimation strategies for parameters based on shrinkage and pretest principles. It is advantageous to use the non-sample information in the estimation process to construct alternative estimations for the parameter of interest. In this article, large sample properties of the suggested estimators will be assessed numerically using computer simulation. The relative performance of the suggested estimators for moderate and large samples will also be simulated. For illustration purposes, the proposed methodology is applied using data collocated from the Pepsi Cola production company in Al-Khobar, Saudi Arabia. 相似文献
3.
Amer Ibrahim Al-Omari Mohammad Z. Raqab 《Journal of Statistical Computation and Simulation》2013,83(8):1453-1471
In this paper, a new sampling method is suggested, namely truncation-based ranked set samples (TBRSS) for estimating the population mean and median. The suggested method is compared with the simple random sampling (SRS), ranked set sampling (RSS), extreme ranked set sampling (ERSS) and median-ranked set sampling (MRSS) methods. It is shown that for estimating the population mean when the underlying distribution is symmetric, TBRSS estimator is unbiased and it is more efficient than the SRS estimator based on the same number of measured units. For asymmetric distributions considered in this study, TBRSS estimator is more efficient than the SRS for all considered distributions except for exponential distribution when the selection coefficient gets large. When compared with ERSS and MRSS methods, TBRSS performs well with respect to ERSS for all considered distributions except for U(0, 1) distribution, while TBRSS efficiency is higher than that of MRSS for U(0, 1) distribution. For estimating the population median, the TBRSS estimators have higher efficiencies when compared with SRS and ERSS. A real data set is used to illustrate the suggested method. 相似文献
4.
《Journal of Statistical Computation and Simulation》2012,82(10):1501-1516
In this study, we consider the application of the James–Stein estimator for population means from a class of arbitrary populations based on ranked set sample (RSS). We consider a basis for optimally combining sample information from several data sources. We succinctly develop the asymptotic theory of simultaneous estimation of several means for differing replications based on the well-defined shrinkage principle. We showcase that a shrinkage-type estimator will have, under quadratic loss, a substantial risk reduction relative to the classical estimator based on simple random sample and RSS. Asymptotic distributional quadratic biases and risks of the shrinkage estimators are derived and compared with those of the classical estimator. A simulation study is used to support the asymptotic result. An over-riding theme of this study is that the shrinkage estimation method provides a powerful extension of its traditional counterpart for non-normal populations. Finally, we will use a real data set to illustrate the computation of the proposed estimators. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(7):761-774
When measuring units are expensive or time consuming, while ranking them is relatively easy and inexpensive, it is known that ranked set sampling (RSS) is preferable to simple random sampling (SRS). Many authors have suggested several extensions of RSS. As a variation, Al-Saleh and Al-Kadiri [Double ranked set sampling, Statist. Probab. Lett. 48 (2000), pp. 205–212] introduced double ranked set sampling (DRSS) and it was extended by Al-Saleh and Al-Omari [Multistage ranked set sampling, J. Statist. Plann. Inference 102 (2002), pp. 273–286] to multistage ranked set sampling (MSRSS). The entropy of a random variable (r.v.) is a measure of its uncertainty. It is a measure of the amount of information required on the average to determine the value of a (discrete) r.v.. In this work, we discuss entropy estimation in RSS design and aforementioned extensions and compare the results with those in SRS design in terms of bias and root mean square error (RMSE). Motivated by the above observed efficiency, we continue to investigate entropy-based goodness-of-fit test for the inverse Gaussian distribution using RSS. Critical values for some sample sizes determined by means of Monte Carlo simulations are presented for each design. A Monte Carlo power analysis is performed under various alternative hypotheses in order to compare the proposed testing procedure with the existing methods. The results indicate that tests based on RSS and its extensions are superior alternatives to the entropy test based on SRS. 相似文献
6.
Estimation of variance based on a ranked set sample 总被引:3,自引:0,他引:3
In this paper we examine the problem of the estimation of the variance σ2 of a population based on a ranked set sample (RSS) from a nonparametric point of view. It is well known that based on a single cycle RSS, there does not exist an unbiased estimate of σ2. We show that for more than one cycle, it is possible to construct a class of quadratic unbiased estimates of σ2 in both balanced and unbalanced cases. Moreover, a minimum variance unbiased quadratic nonnegative estimate of σ2 within a certain class of quadratic estimates is derived. 相似文献
7.
Daniel F. Linder Lili Yu Arpita Chatterjee Yisong Huang Robert Vogel 《Journal of applied statistics》2015,42(12):2571-2583
We investigate the relative performance of stratified bivariate ranked set sampling (SBVRSS), with respect to stratified simple random sampling (SSRS) for estimating the population mean with regression methods. The mean and variance of the proposed estimators are derived with the mean being shown to be unbiased. We perform a simulation study to compare the relative efficiency of SBVRSS to SSRS under various data-generating scenarios. We also compare the two sampling schemes on a real data set from trauma victims in a hospital setting. The results of our simulation study and the real data illustration indicate that using SBVRSS for regression estimation provides more efficiency than SSRS in most cases. 相似文献
8.
Hani M. Samawi Haresh Rochani Daniel Linder Arpita Chatterjee 《Journal of applied statistics》2017,44(4):753-766
Logistic regression is the most popular technique available for modeling dichotomous-dependent variables. It has intensive application in the field of social, medical, behavioral and public health sciences. In this paper we propose a more efficient logistic regression analysis based on moving extreme ranked set sampling (MERSSmin) scheme with ranking based on an easy-to-available auxiliary variable known to be associated with the variable of interest (response variable). The paper demonstrates that this approach will provide more powerful testing procedure as well as more efficient odds ratio and parameter estimation than using simple random sample (SRS). Theoretical derivation and simulation studies will be provided. Real data from 2011 Youth Risk Behavior Surveillance System (YRBSS) data are used to illustrate the procedures developed in this paper. 相似文献
9.
Ranked set sampling (RSS) design as a cost-effective sampling is a powerful tool in situations where measuring the variable of interest is costly and time-consuming; however, ranking information about sampling units can be obtained easily through inexpensive and easy to measure characteristics at little or no cost. In this paper, we study RSS data for analysis of an ordinal population. First, we compare the problem of non-representative extreme samples under RSS and commonly-used simple random sampling. Using RSS data with tie information, we propose non-parametric and maximum likelihood estimators for population parameters. Through extensive numerical studies, we investigate the effect of various factors including ranking ability, tie generating mechanisms, the number of categories and population setting on the performance of the estimators. Finally, we apply the proposed methods to the bone disorder data to estimate the proportions of patients with osteopenia and osteoporosis status. 相似文献
10.
《Journal of Statistical Computation and Simulation》2012,82(5):931-945
In this paper, we suggest a class of estimators for estimating the population mean ? of the study variable Y using information on X?, the population mean of the auxiliary variable X using ranked set sampling envisaged by McIntyre [A method of unbiased selective sampling using ranked sets, Aust. J. Agric. Res. 3 (1952), pp. 385–390] and developed by Takahasi and Wakimoto [On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Statist. Math. 20 (1968), pp. 1–31]. The estimator reported by Kadilar et al. [Ratio estimator for the population mean using ranked set sampling, Statist. Papers 50 (2009), pp. 301–309] is identified as a member of the proposed class of estimators. The bias and the mean-squared error (MSE) of the proposed class of estimators are obtained. An asymptotically optimum estimator in the class is identified with its MSE formulae. To judge the merits of the suggested class of estimators over others, an empirical study is carried out. 相似文献
11.
Mohammad Fraiwan Al-Saleh & Gang Zheng 《Australian & New Zealand Journal of Statistics》2002,44(2):221-232
The superiority of ranked set sampling (RSS) over simple random sampling (SRS) for estimating the mean of a population is well known. This paper introduces and investigates a bivariate version of RSS for estimating the means of two characteristics simultaneously. It turns out that this technique is always superior to SRS and the usual univariate RSS of the same size. The performance of this procedure for a specific distribution can be evaluated using simulation or numerical computation. For the bivariate normal distribution, the efficiency of the procedure with respect to that of SRS is evaluated exactly for set size m = 2 and 3. The paper shows that the proposed estimator is more efficient than the regression RSS estimators proposed by Yu & Lam (1997) and Chen (2001). Real data that consist of heights and diameters of 399 trees are used to illustrate the procedure. The procedure can be generalized to the case of multiple characteristics. 相似文献
12.
In this paper we consider the problem of estimating the reliability of an exponential component based on a Ranked Set Sample (RSS) of size n. Given the first r observations of that sample, 1≤r≤n, we construct an unbiased estimator for this reliability and we show that these n unbiased estimators are the only ones in a certain class of estimators. The variances of some of these estimators are compared. By viewing the observations of the RSS of size n as the lifetimes of n independent k-out-of-n systems, 1≤k≤n, we are able to utilize known properties of these systems in conjunction with the powerful tools of majorization and Schur functions to derive our results. 相似文献
13.
《Journal of Statistical Computation and Simulation》2012,82(8):1055-1066
In this paper, double robust extreme ranked set sampling (DRERSS) and its properties for estimating the population mean are considered. It turns out that, when the underlying distribution is symmetric, DRERSS gives unbiased estimators of the population mean. Also, it is found that DRERSS is more efficient than the simple random sampling (SRS), ranked set sampling (RSS), and extreme ranked set sampling (ERSS) methods. For asymmetric distributions considered in this study, the DRERSS has a small bias and it is more efficient than SRS, RSS, and ERSS. A real data set is used to illustrate the DRERSS method. 相似文献
14.
《Journal of Statistical Computation and Simulation》2012,82(7):859-867
In this paper, a robust extreme ranked set sampling (RERSS) procedure for estimating the population mean is introduced. It is shown that the proposed method gives an unbiased estimator with smaller variance, provided the underlying distribution is symmetric. However, for asymmetric distributions a weighted mean is given, where the optimal weights are computed by using Shannon's entropy. The performance of the population mean estimator is discussed along with its properties. Monte Carlo simulations are used to demonstrate the performance of the RERSS estimator relative to the simple random sample (SRS), ranked set sampling (RSS) and extreme ranked set sampling (ERSS) estimators. The results indicate that the proposed estimator is more efficient than the estimators based on the traditional sampling methods. 相似文献
15.
In this work, we define a new method of ranked set sampling (RSS) which is suitable when the characteristic (variable) Y of primary interest on the units is jointly distributed with an auxiliary characteristic X on which one can take its measurement on any number of units, so that units having record values on X alone are ranked and retained for making measurement on Y. We name this RSS as concomitant record ranked set sampling (CRRSS). We propose estimators of the parameters associated with the variable Y of primary interest based on observations of the proposed CRRSS which are applicable to a very large class of distributions viz. Morgenstern family of distributions. We illustrate the application of CRRSS and our estimation technique of parameters, when the basic distribution is Morgenstern-type bivariate logistic distribution. A primary data collected by CRRSS method is demonstrated and the obtained data used to illustrate the results developed in this work. 相似文献
16.
Nursel Koyuncu 《统计学通讯:理论与方法》2018,47(23):5845-5853
Calibration method adjusts the original design weights to improve the estimates by using auxiliary information. In this article we have proposed new calibration estimators under stratified ranked set sampling design and derive the estimator of variance of calibration estimator. A simulation study is carried out to see the performance of proposed estimators. 相似文献
17.
In this paper, we consider two-sample prediction problems. First, based on ordered ranked set sampling (ORSS) introduced by Balakrishnan and Li [Ordered ranked set samples and applications to inference. Ann Inst Statist Math. 2006;58:757–777], we obtain prediction intervals for order statistics from a future sample and compare the results with the one based on the usual-order statistics. Next, we construct prediction intervals for record values from a future sequence based on ORSS and compare the results with the one based on an another independent record sequence developed recently by Ahmadi and Balakrishnan [Prediction of order statistics and record values from two independent sequences. Statistics. 2010;44:417–430]. 相似文献
18.
19.
In this paper, we consider the problem of estimating the population proportion in pair ranked set sampling design. An unbiased estimator for the population proportion is proposed, and its theoretical properties are studied. It is shown that the estimator is more (less) efficient than its counterpart in simple random sampling (ranked set sampling). Asymptotic normality of the estimator is also established. Application of the suggested procedure is illustrated using a data set from an environmental study. 相似文献
20.
《Journal of Statistical Computation and Simulation》2012,82(11):2262-2272
ABSTRACTIn this paper, Vasicek [A test for normality based on sample entropy. J R Stat Soc Ser B. 1976;38:54–59] entropy estimator is modified using paired ranked set sampling (PRSS) method. Also, two goodness-of-fit tests using PRSS are suggested for the inverse Gaussian and Laplace distributions. The new suggested entropy estimator and goodness-of-fit tests using PRSS are compared with their counterparts using simple random sampling (SRS) via Monte Carlo simulations. The critical values of the suggested tests are obtained, and the powers of the tests based on several alternatives hypotheses using SRS and PRSS are calculated. It turns out that the proposed PRSS entropy estimator is more efficient than the SRS counterpart in terms of root mean square error. Also, the proposed PRSS goodness-of-fit tests have higher powers than their counterparts using SRS for all alternative considered in this study. 相似文献