首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we consider the asymptotic distributions of functionals of the sample covariance matrix and the sample mean vector obtained under the assumption that the matrix of observations has a matrix‐variate location mixture of normal distributions. The central limit theorem is derived for the product of the sample covariance matrix and the sample mean vector. Moreover, we consider the product of the inverse sample covariance matrix and the mean vector for which the central limit theorem is established as well. All results are obtained under the large‐dimensional asymptotic regime, where the dimension p and the sample size n approach infinity such that p/nc ∈ [0, + ) when the sample covariance matrix does not need to be invertible and p/nc ∈ [0,1) otherwise.  相似文献   

2.
This paper derives first-order sampling moments of individual Mahalanobis distances (MDs) in cases when the dimension p of the variable is proportional to the sample size n. Asymptotic expected values when n, p → ∞ are derived under the assumption p/nc,?0 ? c < 1. It is shown that some types of standard estimators remain unbiased in this case, while others are asymptotically biased, a property that appears to be unnoticed in the literature. Second-order moments are also supplied to give some additional insight to the matter.  相似文献   

3.
The problem of estimating the total number of trials n in a binomial distribution is reconsidered in this article for both cases of known and unknown probability of success p from the Bayesian viewpoint. Bayes and empirical Bayes point estimates for n are proposed under the assumption of a left-truncated prior distribution for n and a beta prior distribution for p. Simulation studies are provided in this article in order to compare the proposed estimate with the most familiar n estimates.  相似文献   

4.
Test statistics for sphericity and identity of the covariance matrix are presented, when the data are multivariate normal and the dimension, p, can exceed the sample size, n. Under certain mild conditions mainly on the traces of the unknown covariance matrix, and using the asymptotic theory of U-statistics, the test statistics are shown to follow an approximate normal distribution for large p, also when p?n. The accuracy of the statistics is shown through simulation results, particularly emphasizing the case when p can be much larger than n. A real data set is used to illustrate the application of the proposed test statistics.  相似文献   

5.
Two new statistics are proposed for testing the identity of high-dimensional covariance matrix. Applying the large dimensional random matrix theory, we study the asymptotic distributions of our proposed statistics under the situation that the dimension p and the sample size n tend to infinity proportionally. The proposed tests can accommodate the situation that the data dimension is much larger than the sample size, and the situation that the population distribution is non-Gaussian. The numerical studies demonstrate that the proposed tests have good performance on the empirical powers for a wide range of dimensions and sample sizes.  相似文献   

6.
For a multivariate linear model, Wilk's likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative hypothesis requires complex analytic approximations, and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say p≤20. On the other hand, assuming that the data dimension p as well as the number q of regression variables are fixed while the sample size n grows, several asymptotic approximations are proposed in the literature for Wilk's Λ including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilk's test in a high-dimensional context, specifically assuming a high data dimension p and a large sample size n. Based on recent random matrix theory, the correction we propose to Wilk's test is asymptotically Gaussian under the null hypothesis and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large p and large n context, but also for moderately large data dimensions such as p=30 or p=50. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in multivariate analysis of variance which is valid for high-dimensional data.  相似文献   

7.
Under non-normality, this article is concerned with testing diagonality of high-dimensional covariance matrix, which is more practical than testing sphericity and identity in high-dimensional setting. The existing testing procedure for diagonality is not robust against either the data dimension or the data distribution, producing tests with distorted type I error rates much larger than nominal levels. This is mainly due to bias from estimating some functions of high-dimensional covariance matrix under non-normality. Compared to the sphericity and identity hypotheses, the asymptotic property of the diagonality hypothesis would be more involved and we should be more careful to deal with bias. We develop a correction that makes the existing test statistic robust against both the data dimension and the data distribution. We show that the proposed test statistic is asymptotically normal without the normality assumption and without specifying an explicit relationship between the dimension p and the sample size n. Simulations show that it has good size and power for a wide range of settings.  相似文献   

8.
This paper proposes an affine‐invariant test extending the univariate Wilcoxon signed‐rank test to the bivariate location problem. It gives two versions of the null distribution of the test statistic. The first version leads to a conditionally distribution‐free test which can be used with any sample size. The second version can be used for larger sample sizes and has a limiting χ22 distribution under the null hypothesis. The paper investigates the relationship with a test proposed by Jan & Randles (1994). It shows that the Pitman efficiency of this test relative to the new test is equal to 1 for elliptical distributions but that the two tests are not necessarily equivalent for non‐elliptical distributions. These facts are also demonstrated empirically in a simulation study. The new test has the advantage of not requiring the assumption of elliptical symmetry which is needed to perform the asymptotic version of the Jan and Randles test.  相似文献   

9.
Despite the simplicity of the Bernoulli process, developing good confidence interval procedures for its parameter—the probability of success p—is deceptively difficult. The binary data yield a discrete number of successes from a discrete number of trials, n. This discreteness results in actual coverage probabilities that oscillate with the n for fixed values of p (and with p for fixed n). Moreover, this oscillation necessitates a large sample size to guarantee a good coverage probability when p is close to 0 or 1.

It is well known that the Wilson procedure is superior to many existing procedures because it is less sensitive to p than any other procedures, therefore it is less costly. The procedures proposed in this article work as well as the Wilson procedure when 0.1 ≤p ≤ 0.9, and are even less sensitive (i.e., more robust) than the Wilson procedure when p is close to 0 or 1. Specifically, when the nominal coverage probability is 0.95, the Wilson procedure requires a sample size 1, 021 to guarantee that the coverage probabilities stay above 0.92 for any 0.001 ≤ min {p, 1 ?p} <0.01. By contrast, our procedures guarantee the same coverage probabilities but only need a sample size 177 without increasing either the expected interval width or the standard deviation of the interval width.  相似文献   

10.
《统计学通讯:理论与方法》2012,41(13-14):2465-2489
The Akaike information criterion, AIC, and Mallows’ C p statistic have been proposed for selecting a smaller number of regressors in the multivariate regression models with fully unknown covariance matrix. All of these criteria are, however, based on the implicit assumption that the sample size is substantially larger than the dimension of the covariance matrix. To obtain a stable estimator of the covariance matrix, it is required that the dimension of the covariance matrix is much smaller than the sample size. When the dimension is close to the sample size, it is necessary to use ridge-type estimators for the covariance matrix. In this article, we use a ridge-type estimators for the covariance matrix and obtain the modified AIC and modified C p statistic under the asymptotic theory that both the sample size and the dimension go to infinity. It is numerically shown that these modified procedures perform very well in the sense of selecting the true model in large dimensional cases.  相似文献   

11.
Kumar and Patel (1971) have considered the problem of testing the equality of location parameters of two exponential distributions on the basis of samples censored from above, when the scale parameters are the same and unknown. The test proposed by them is shown to be biased for n1n2, while for n1=n2 the test possesses the property of monotonicity and is equivalent to the likelihood ratio test, which is considered by Epstein and Tsao (1953) and Dubey (1963a, 1963b). Epstein and Tsao state that the test is unbiased. We may note that when the scale parameters of k exponential distributions are unknown the problem of testing the equality of location parameters is reducible to that of testing the equality of parameters in k rectangular populations for which a test and its power function were given by Khatri (1960, 1965); Jaiswal (1969) considered similar problems in his thesis. Here we extend the problem of testing the equality of k exponential distributions on the basis of samples censored from above when the scale parameters are equal and unknown, and we establish the likelihood ratio test (LET) and the union-intersection test (UIT) procedures. Using the results previously derived by Jaiswal (1969), we obtain the power function for the LET and for k= 2 show that the test possesses the property of monotonicity. The power function of the UIT is also given.  相似文献   

12.
A nonparametric test for detecting changing conditional variances in stationary AR(p) time series is proposed in this paper. For AR(1) models, the test statistic is a Kolmogorov-Smirnov type statistic and the asymptotic theory is developed under both the null and the alternative hypotheses. For AR(p) models (p ≥ 2), an approximate test procedure is proposed. The empirical upper percentage points for our test are tabulated for both p = 1 and p = 2 cases and a bootstrap procedure is suggested for the p ≥ 3 case. Monte Carlo simulations demonstrate that the test has very good powers for finite samples under both normal and non-normal errors.  相似文献   

13.
This article proposes a modified p-value for the two-sided test of the location of the normal distribution when the parameter space is restricted. A commonly used test for the two-sided test of the normal distribution is the uniformly most powerful unbiased (UMPU) test, which is also the likelihood ratio test. The p-value of the test is used as evidence against the null hypothesis. Note that the usual p-value does not depend on the parameter space but only on the observation and the assumption of the null hypothesis. When the parameter space is known to be restricted, the usual p-value cannot sufficiently utilize this information to make a more accurate decision. In this paper, a modified p-value (also called the rp-value) dependent on the parameter space is proposed, and the test derived from the modified p-value is also shown to be the UMPU test.  相似文献   

14.
In their recent work, Jiang and Yang studied six classical Likelihood Ratio Test statistics under high‐dimensional setting. Assuming that a random sample of size n is observed from a p‐dimensional normal population, they derive the central limit theorems (CLTs) when p and n are proportional to each other, which are different from the classical chi‐square limits as n goes to infinity, while p remains fixed. In this paper, by developing a new tool, we prove that the mentioned six CLTs hold in a more applicable setting: p goes to infinity, and p can be very close to n. This is an almost sufficient and necessary condition for the CLTs. Simulations of histograms, comparisons on sizes and powers with those in the classical chi‐square approximations and discussions are presented afterwards.  相似文献   

15.
The proportional odds model (POM) is commonly used in regression analysis to predict the outcome for an ordinal response variable. The maximum likelihood estimation (MLE) approach is typically used to obtain the parameter estimates. The likelihood estimates do not exist when the number of parameters, p, is greater than the number of observations n. The MLE also does not exist if there are no overlapping observations in the data. In a situation where the number of parameters is less than the sample size but p is approaching to n, the likelihood estimates may not exist, and if they exist they may have quite large standard errors. An estimation method is proposed to address the last two issues, i.e. complete separation and the case when p approaches n, but not the case when p>n. The proposed method does not use any penalty term but uses pseudo-observations to regularize the observed responses by downgrading their effect so that they become close to the underlying probabilities. The estimates can be computed easily with all commonly used statistical packages supporting the fitting of POMs with weights. Estimates are compared with MLE in a simulation study and an application to the real data.  相似文献   

16.
Many procedures exist for testing equality of means or medians to compare several independent distributions. However, the mean or median do not determine the entire distribution. In this article, we propose a new small-sample modification of the likelihood ratio test for testing the equality of the quantiles of several normal distributions. The merits of the proposed test are numerically compared with the existing tests—a generalized p-value method and likelihood ratio test—with respect to their sizes and powers. The simulation results demonstrate that proposed method is satisfactory; its actual size is very close to the nominal level. We illustrate these approaches using two real examples.  相似文献   

17.
The paper considers a significance test of regression variables in the high-dimensional linear regression model when the dimension of the regression variables p, together with the sample size n, tends to infinity. Under two sightly different cases, we proved that the likelihood ratio test statistic will converge in distribution to a Gaussian random variable, and the explicit expressions of the asymptotical mean and covariance are also obtained. The simulations demonstrate that our high-dimensional likelihood ratio test method outperforms those using the traditional methods in analyzing high-dimensional data.  相似文献   

18.
Recently, several new robust multivariate estimators of location and scatter have been proposed that provide new and improved methods for detecting multivariate outliers. But for small sample sizes, there are no results on how these new multivariate outlier detection techniques compare in terms of p n , their outside rate per observation (the expected proportion of points declared outliers) under normality. And there are no results comparing their ability to detect truly unusual points based on the model that generated the data. Moreover, there are no results comparing these methods to two fairly new techniques that do not rely on some robust covariance matrix. It is found that for an approach based on the orthogonal Gnanadesikan–Kettenring estimator, p n can be very unsatisfactory with small sample sizes, but a simple modification gives much more satisfactory results. Similar problems were found when using the median ball algorithm, but a modification proved to be unsatisfactory. The translated-biweights (TBS) estimator generally performs well with a sample size of n≥20 and when dealing with p-variate data where p≤5. But with p=8 it can be unsatisfactory, even with n=200. A projection method as well the minimum generalized variance method generally perform best, but with p≤5 conditions where the TBS method is preferable are described. In terms of detecting truly unusual points, the methods can differ substantially depending on where the outliers happen to be, the number of outliers present, and the correlations among the variables.  相似文献   

19.
Birnbaum–Saunders (BS) distribution is widely used in reliability applications to model failure times. For several samples from possible different BS distributions, to prevent wrong conclusions in any further analysis, it is of importance to accompany a formal comparison for characteristic quantities of the distributions, including mean, quantile and reliability function difference. To this end, two test statistics, which are respectively based on the exact generalized p-value approach and the Delta method, are proposed and their behaviours are investigated. Simulation studies are carried out to examine the size and power performance of the newly proposed statistics. An interesting phenomenon is that in the finite sample simulations we conduct, the Delta method-based test almost uniformly outperforms the generalized p-value-based test although its sampling null distribution is simulated by Monte Carlo method. This might suggest that the sampling null distribution of the Delta method-based test statistic would have a fast convergence to its limit. The tests are also applied to analyse a real example on the fatigue life of 6061-T6 aluminium coupons for illustration.  相似文献   

20.
The lognormal and Weibull distributions are the most popular distributions for modeling lifetime data. In practical applications, they usually fit the data at hand well. However, their predictions may lead to large differences. The main purpose of the present article is to investigate the impacts of mis-specification between the lognormal and Weibull distributions on the interval estimation of a pth quantile of the distributions for complete data. The coverage probabilities of the confidence intervals (CIs) with mis-specification are evaluated. The results indicate that for both the lognormal and the Weibull distributions, the coverage probabilities are significantly influenced by mis-specification, especially for a small or a large p on lower or upper tail of the distributions. In addition, based on the coverage probabilities with correct and mis-specification, a maxmin criterion is proposed to make a choice between these two distributions. The numerical results indicate that for p ≤ 0.05 and 0.6 ≤ p ≤ 0.8, Weibull distribution is suggested to evaluate CIs of a pth quantile of the distributions, while, for 0.2 ≤ p ≤ 0.5 and p = 0.99, lognormal distribution is suggested to evaluate CIs of a pth quantile of the distributions. Besides, for p = 0.9 and 0.95, lognormal distribution is suggested if the sample size is large enough, while, for p = 0.1, Weibull distribution is suggested if the sample size is large enough. Finally, a simulation study is conducted to evaluate the efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号