首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider Dirichlet process mixture models in which the observed clusters in any particular dataset are not viewed as belonging to a finite set of possible clusters but rather as representatives of a latent structure in which objects belong to one of a potentially infinite number of clusters. As more information is revealed the number of inferred clusters is allowed to grow. The precision parameter of the Dirichlet process is a crucial parameter that controls the number of clusters. We develop a framework for the specification of the hyperparameters associated with the prior for the precision parameter that can be used both in the presence or absence of subjective prior information about the level of clustering. Our approach is illustrated in an analysis of clustering brands at the magazine Which?. The results are compared with the approach of Dorazio (2009) via a simulation study.  相似文献   

2.
Stylometry refers to the statistical analysis of literary style of authors based on the characteristics of expression in their writings. We propose an approach to stylometry based on a Bayesian Dirichlet process mixture model using multinomial word frequency data. The parameters of the multinomial distribution of word frequency data are the “word prints” of the author. Our approach is based on model-based clustering of the vectors of probability values of the multinomial distribution. The resultant clusters identify different writing styles that assist in author attribution for disputed works in a corpus. As a test case, the methodology is applied to the problem of authorship attribution involving the Federalist papers. Our results are consistent with previous stylometric analyses of these papers.  相似文献   

3.
The Bayesian approach to inference stands out for naturally allowing borrowing information across heterogeneous populations, with different samples possibly sharing the same distribution. A popular Bayesian nonparametric model for clustering probability distributions is the nested Dirichlet process, which however has the drawback of grouping distributions in a single cluster when ties are observed across samples. With the goal of achieving a flexible and effective clustering method for both samples and observations, we investigate a nonparametric prior that arises as the composition of two different discrete random structures and derive a closed-form expression for the induced distribution of the random partition, the fundamental tool regulating the clustering behavior of the model. On the one hand, this allows to gain a deeper insight into the theoretical properties of the model and, on the other hand, it yields an MCMC algorithm for evaluating Bayesian inferences of interest. Moreover, we single out limitations of this algorithm when working with more than two populations and, consequently, devise an alternative more efficient sampling scheme, which as a by-product, allows testing homogeneity between different populations. Finally, we perform a comparison with the nested Dirichlet process and provide illustrative examples of both synthetic and real data.  相似文献   

4.
We propose a class of Bayesian semiparametric mixed-effects models; its distinctive feature is the randomness of the grouping of observations, which can be inferred from the data. The model can be viewed under a more natural perspective, as a Bayesian semiparametric regression model on the log-scale; hence, in the original scale, the error is a mixture of Weibull densities mixed on both parameters by a normalized generalized gamma random measure, encompassing the Dirichlet process. As an estimate of the posterior distribution of the clustering of the random-effects parameters, we consider the partition minimizing the posterior expectation of a suitable class of loss functions. As a merely illustrative application of our model we consider a Kevlar fibre lifetime dataset (with censoring). We implement an MCMC scheme, obtaining posterior credibility intervals for the predictive distributions and for the quantiles of the failure times under different stress levels. Compared to a previous parametric Bayesian analysis, we obtain narrower credibility intervals and a better fit to the data. We found that there are three main clusters among the random-effects parameters, in accordance with previous frequentist analysis.  相似文献   

5.
This paper presents a new Bayesian, infinite mixture model based, clustering approach, specifically designed for time-course microarray data. The problem is to group together genes which have “similar” expression profiles, given the set of noisy measurements of their expression levels over a specific time interval. In order to capture temporal variations of each curve, a non-parametric regression approach is used. Each expression profile is expanded over a set of basis functions and the sets of coefficients of each curve are subsequently modeled through a Bayesian infinite mixture of Gaussian distributions. Therefore, the task of finding clusters of genes with similar expression profiles is then reduced to the problem of grouping together genes whose coefficients are sampled from the same distribution in the mixture. Dirichlet processes prior is naturally employed in such kinds of models, since it allows one to deal automatically with the uncertainty about the number of clusters. The posterior inference is carried out by a split and merge MCMC sampling scheme which integrates out parameters of the component distributions and updates only the latent vector of the cluster membership. The final configuration is obtained via the maximum a posteriori estimator. The performance of the method is studied using synthetic and real microarray data and is compared with the performances of competitive techniques.  相似文献   

6.
Summary.  In functional data analysis, curves or surfaces are observed, up to measurement error, at a finite set of locations, for, say, a sample of n individuals. Often, the curves are homogeneous, except perhaps for individual-specific regions that provide heterogeneous behaviour (e.g. 'damaged' areas of irregular shape on an otherwise smooth surface). Motivated by applications with functional data of this nature, we propose a Bayesian mixture model, with the aim of dimension reduction, by representing the sample of n curves through a smaller set of canonical curves. We propose a novel prior on the space of probability measures for a random curve which extends the popular Dirichlet priors by allowing local clustering: non-homogeneous portions of a curve can be allocated to different clusters and the n individual curves can be represented as recombinations (hybrids) of a few canonical curves. More precisely, the prior proposed envisions a conceptual hidden factor with k -levels that acts locally on each curve. We discuss several models incorporating this prior and illustrate its performance with simulated and real data sets. We examine theoretical properties of the proposed finite hybrid Dirichlet mixtures, specifically, their behaviour as the number of the mixture components goes to ∞ and their connection with Dirichlet process mixtures.  相似文献   

7.
Summary. We present a decision theoretic formulation of product partition models (PPMs) that allows a formal treatment of different decision problems such as estimation or hypothesis testing and clustering methods simultaneously. A key observation in our construction is the fact that PPMs can be formulated in the context of model selection. The underlying partition structure in these models is closely related to that arising in connection with Dirichlet processes. This allows a straightforward adaptation of some computational strategies—originally devised for nonparametric Bayesian problems—to our framework. The resulting algorithms are more flexible than other competing alternatives that are used for problems involving PPMs. We propose an algorithm that yields Bayes estimates of the quantities of interest and the groups of experimental units. We explore the application of our methods to the detection of outliers in normal and Student t regression models, with clustering structure equivalent to that induced by a Dirichlet process prior. We also discuss the sensitivity of the results considering different prior distributions for the partitions.  相似文献   

8.
In the field of molecular biology, it is often of interest to analyze microarray data for clustering genes based on similar profiles of gene expression to identify genes that are differentially expressed under multiple biological conditions. One of the notable characteristics of a gene expression profile is that it shows a cyclic curve over a course of time. To group sequences of similar molecular functions, we propose a Bayesian Dirichlet process mixture of linear regression models with a Fourier series for the regression coefficients, for each of which a spike and slab prior is assumed. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo (MCMC) posterior computation. Due to the so-called “label-switching” problem and different numbers of clusters during the MCMC computation, a post-process approach of Fritsch and Ickstadt (2009) is additionally applied to MCMC samples for an optimal single clustering estimate by maximizing the posterior expected adjusted Rand index with the posterior probabilities of two observations being clustered together. The proposed method is illustrated with two simulated data and one real data of the physiological response of fibroblasts to serum of Iyer et al. (1999).  相似文献   

9.

We propose two nonparametric Bayesian methods to cluster big data and apply them to cluster genes by patterns of gene–gene interaction. Both approaches define model-based clustering with nonparametric Bayesian priors and include an implementation that remains feasible for big data. The first method is based on a predictive recursion which requires a single cycle (or few cycles) of simple deterministic calculations for each observation under study. The second scheme is an exact method that divides the data into smaller subsamples and involves local partitions that can be determined in parallel. In a second step, the method requires only the sufficient statistics of each of these local clusters to derive global clusters. Under simulated and benchmark data sets the proposed methods compare favorably with other clustering algorithms, including k-means, DP-means, DBSCAN, SUGS, streaming variational Bayes and an EM algorithm. We apply the proposed approaches to cluster a large data set of gene–gene interactions extracted from the online search tool “Zodiac.”

  相似文献   

10.
In this paper, the destructive negative binomial (DNB) cure rate model with a latent activation scheme [V. Cancho, D. Bandyopadhyay, F. Louzada, and B. Yiqi, The DNB cure rate model with a latent activation scheme, Statistical Methodology 13 (2013b), pp. 48–68] is extended to the case where the observations are grouped into clusters. Parameter estimation is performed based on the restricted maximum likelihood approach and on a Bayesian approach based on Dirichlet process priors. An application to a real data set related to a sealant study in a dentistry experiment is considered to illustrate the performance of the proposed model.  相似文献   

11.
The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components is not specified in advance and can grow as new data arrive. However, analyses based on the Dirichlet process prior are sensitive to the choice of the parameters, including an infinite-dimensional distributional parameter G 0. Most previous applications have either fixed G 0 as a member of a parametric family or treated G 0 in a Bayesian fashion, using parametric prior specifications. In contrast, we have developed an adaptive nonparametric method for constructing smooth estimates of G 0. We combine this method with a technique for estimating α, the other Dirichlet process parameter, that is inspired by an existing characterization of its maximum-likelihood estimator. Together, these estimation procedures yield a flexible empirical Bayes treatment of Dirichlet process mixtures. Such a treatment is useful in situations where smooth point estimates of G 0 are of intrinsic interest, or where the structure of G 0 cannot be conveniently modeled with the usual parametric prior families. Analysis of simulated and real-world datasets illustrates the robustness of this approach.  相似文献   

12.
This article attempts to predict home run hitting performance of Major League Baseball players using a Bayesian semiparametric model. Following Berry, Reese and Larkey we include in the model effects for era of birth, season of play, and home ball park. We estimate performance curves for each player using orthonormal quartic polynomials. We use a Dirichlet process prior on the unknown distribution for the coefficients of the polynomials, and parametric priors for the other effects. Dirichlet process priors are useful in prediction for two reasons: (1) an increased probability of obtaining more precise prediction comes with the increased flexibility of the prior specification, and (2) the clustering inherent in the Dirichlet process provides the means to share information across players. Data from 1871 to 2008 were used to fit the model. Data from 2009 to 2016 were used to test the predictive ability of the model. A parametric model was also fit to compare the predictive performance of the models. We used what we called “pure performance” curves to predict future performance for 22 players. The nonparametric method provided superior predictive performance.  相似文献   

13.
14.
The Dirichlet process is a fundamental tool in studying Bayesian nonparametric inference. The Dirichlet process has several sum representations, where each one of these representations highlights some aspects of this important process. In this paper, we use the sum representations of the Dirichlet process to derive explicit expressions that are used to calculate Kolmogorov, Lévy, and Cramér–von Mises distances between the Dirichlet process and its base measure. The derived expressions of the distance are used to select a proper value for the concentration parameter of the Dirichlet process. These tools are also used in a goodness-of-fit test. Illustrative examples and simulation results are included.  相似文献   

15.
As an approximation to the Dirichlet process which involves the infinite-dimensional distribution, finite-dimensional Dirichlet prior is a widely appreciated method to model the underlying distribution in non parametric Bayesian analysis. In this short note, we present some key characteristics of finite-dimensional Dirichlet process and exploit some important sampling properties which are very useful in Bayesian non parametric/semiparametric analysis.  相似文献   

16.
In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter αα and a base probability measure G0G0. In problems where αα is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for αα. In this paper an approach is developed for computing a prior for the precision parameter αα that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.  相似文献   

17.
In the context of an objective Bayesian approach to the multinomial model, Dirichlet(a, …, a) priors with a < 1 have previously been shown to be inadequate in the presence of zero counts, suggesting that the uniform prior (a = 1) is the preferred candidate. In the presence of many zero counts, however, this prior may not be satisfactory either. A model selection approach is proposed, allowing for the possibility of zero parameters corresponding to zero count categories. This approach results in a posterior mixture of Dirichlet distributions and marginal mixtures of beta distributions, which seem to avoid the problems that potentially result from the various proposed Dirichlet priors, in particular in the context of extreme data with zero counts.  相似文献   

18.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically, in this article we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with a prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between models with different numbers of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split–merge proposals to improve the performance of the MCMC algorithm. We apply our proposed algorithms to simulated data as well as a real-data example, and the results demonstrate the desired performance of the new sampler.  相似文献   

19.
This article focuses on the clustering problem based on Dirichlet process (DP) mixtures. To model both time invariant and temporal patterns, different from other existing clustering methods, the proposed semi-parametric model is flexible in that both the common and unique patterns are taken into account simultaneously. Furthermore, by jointly clustering subjects and the associated variables, the intrinsic complex shared patterns among subjects and among variables are expected to be captured. The number of clusters and cluster assignments are directly inferred with the use of DP. Simulation studies illustrate the effectiveness of the proposed method. An application to wheal size data is discussed with an aim of identifying novel temporal patterns among allergens within subject clusters.  相似文献   

20.
For binomial data analysis, many methods based on empirical Bayes interpretations have been developed, in which a variance‐stabilizing transformation and a normality assumption are usually required. To achieve the greatest model flexibility, we conduct nonparametric Bayesian inference for binomial data and employ a special nonparametric Bayesian prior—the Bernstein–Dirichlet process (BDP)—in the hierarchical Bayes model for the data. The BDP is a special Dirichlet process (DP) mixture based on beta distributions, and the posterior distribution resulting from it has a smooth density defined on [0, 1]. We examine two Markov chain Monte Carlo procedures for simulating from the resulting posterior distribution, and compare their convergence rates and computational efficiency. In contrast to existing results for posterior consistency based on direct observations, the posterior consistency of the BDP, given indirect binomial data, is established. We study shrinkage effects and the robustness of the BDP‐based posterior estimators in comparison with several other empirical and hierarchical Bayes estimators, and we illustrate through examples that the BDP‐based nonparametric Bayesian estimate is more robust to the sample variation and tends to have a smaller estimation error than those based on the DP prior. In certain settings, the new estimator can also beat Stein's estimator, Efron and Morris's limited‐translation estimator, and many other existing empirical Bayes estimators. The Canadian Journal of Statistics 40: 328–344; 2012 © 2012 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号