首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider from maximum likelihood and Bayesian points of view the generalized growth curve model when the covariance matrix has a Toeplitz structure. This covariance is a generalization of the AR(1) dependence structure. Inferences on the parameters as well as the future values are included. The results are illustrated with several real data sets.  相似文献   

2.
This paper deals with the problem of quadratic unbiased estimation for models with linear Toeplitz covariance structure. These serial covariance models are very useful to modelize time or spatial correlations by means of linear models. Optimality and local optimality is examined in different ways. For the nested Toeplitz models, it is shown that there does not exist a Uniformly Minimum Variance Quadratic Unbiased Estimator for at least one linear combination of covariance parameters. Moreover, empirical unbiased estimators are identified as Locally Minimum Variance Quadratic Unbiased Estimators for a particular choice on covariance parameters corresponding to the case where the covariance matrix of the observed random vector is proportional to the identity matrix. The complete Toeplitz-circulant model is also studied. For this model, the existence of a Uniformly Minimum Variance Quadratic Unbiased Estimator for each covariance parameter is proved.  相似文献   

3.
Mukherjee and Maiti [Q-procedure for solving likelihood equations in the analysis of covariance structures, Comput. Statist. Quart. 2 (1988), pp. 105–128] proposed an iterative scheme to derive the maximum likelihood estimates of the parameters involved in the population covariance matrix when it is linearly structured. The present investigation provides a Jacobi-type of iterative scheme, MSIII, when the underlying correlation matrix is linearly structured. Such scheme is shown to be quite competent and efficient compared to the prevalent Fisher-scoring (FS) and the Newton–Raphson iterative scheme (NR). An illustrative example is provided for a numerical comparison of the iterates of MSIII, FS and NR choosing the Toeplitz matrix as the population correlation matrix. Numerical behaviour of such schemes is studied in the context of ‘bad’ initial try-out vectors. Additionally a simulation experiment is performed to judge the superiority of MSIII over FS.  相似文献   

4.
This article explores the problem of testing the hypothesis that the covariance matrix is an identity matrix when the dimensionality is equal to the sample size or larger. Two new test statistics are proposed under comparable assumptions to those statistics in the literature. The asymptotic distribution of the proposed test statistics are found and are shown to be consistent in the general asymptotic framework. An extensive simulation study shows the newly proposed tests are comparable to, and in some cases more powerful than, the tests for an identity covariance matrix currently in the literature.  相似文献   

5.
A simple method of setting linear hypotheses for a split mean vector testable by F-tests in a general linear model, when the covariance matrix has a general form and is completely unknown, is provided by extending the method discussed in Ukita et al. The critical functions in these F-tests are constructed as UMP invariants, when the covariance matrix has a known structure. Further critical functions in F-tests of linear hypotheses for the other split mean vector in the model are shown to be UMP invariant if the same known structure of the covariance matrix is assumed.  相似文献   

6.
Classical multivariate methods are often based on the sample covariance matrix, which is very sensitive to outlying observations. One alternative to the covariance matrix is the affine equivariant rank covariance matrix (RCM) that has been studied in Visuri et al. [2003. Affine equivariant multivariate rank methods. J. Statist. Plann. Inference 114, 161–185]. In this article we assume that the covariance matrix is partially known and study how to estimate the corresponding RCM. We use the properties that the RCM is affine equivariant and that the RCM is proportional to the inverse of the regular covariance matrix, and hence reduce the problem of estimating the original RCM to estimating marginal rank covariance matrices. This is a great computational advantage when the dimension of the original data vector is large.  相似文献   

7.
Two new statistics are proposed for testing the identity of high-dimensional covariance matrix. Applying the large dimensional random matrix theory, we study the asymptotic distributions of our proposed statistics under the situation that the dimension p and the sample size n tend to infinity proportionally. The proposed tests can accommodate the situation that the data dimension is much larger than the sample size, and the situation that the population distribution is non-Gaussian. The numerical studies demonstrate that the proposed tests have good performance on the empirical powers for a wide range of dimensions and sample sizes.  相似文献   

8.
Abstract.  For stationary vector-valued random fields on     the asymptotic covariance matrix for estimators of the mean vector can be given by integrated covariance functions. To construct asymptotic confidence intervals and significance tests for the mean vector, non-parametric estimators of these integrated covariance functions are required. Integrability conditions are derived under which the estimators of the covariance matrix are mean-square consistent. For random fields induced by stationary Boolean models with convex grains, these conditions are expressed by sufficient assumptions on the grain distribution. Performance issues are discussed by means of numerical examples for Gaussian random fields and the intrinsic volume densities of planar Boolean models with uniformly bounded grains.  相似文献   

9.
In this article, we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a growth curve model. The maximum likelihood estimator (MLE) for the mean in a growth curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. The MLE for the covariance matrix is based on the MLE for the mean, which can be very poor for p close to N. For both structures (a) and (b), we modify the MLE for the mean to an unweighted estimator and based on this estimator we propose a new estimator for the covariance matrix. This new estimator leads to new tests for (a) and (b). We also propose two other tests for each structure, which are just based on the sample covariance matrix.

To compare the performance of all four tests we compute for each structure (a) and (b) the attained significance level and the empirical power. We show that one of the tests based on the sample covariance matrix is better than the likelihood ratio test based on the MLE.  相似文献   


10.
The common principal components (CPC) model provides a way to model the population covariance matrices of several groups by assuming a common eigenvector structure. When appropriate, this model can provide covariance matrix estimators of which the elements have smaller standard errors than when using either the pooled covariance matrix or the per group unbiased sample covariance matrix estimators. In this article, a regularized CPC estimator under the assumption of a common (or partially common) eigenvector structure in the populations is proposed. After estimation of the common eigenvectors using the Flury–Gautschi (or other) algorithm, the off-diagonal elements of the nearly diagonalized covariance matrices are shrunk towards zero and multiplied with the orthogonal common eigenvector matrix to obtain the regularized CPC covariance matrix estimates. The optimal shrinkage intensity per group can be estimated using cross-validation. The efficiency of these estimators compared to the pooled and unbiased estimators is investigated in a Monte Carlo simulation study, and the regularized CPC estimator is applied to a real dataset to demonstrate the utility of the method.  相似文献   

11.
Upper quantiles of the distribution of the largest root of the multivariate beta matrix are tabulated in this paper. The tables extend the existing ones in regard to the range of one of the two degrees of freedom and are especially useful in tests of equality of two covariance matrices based on Roy's largest root criterion.  相似文献   

12.
A simple method of setting linear hypotheses testable by F-tests in a general linear model when the covariance matrix has a general form and is completely unknown, is provided. With some additional conditions imposed on the covariance matrix, there exist the UMP invariant tests of certain linear hypotheses. We derive them to compare the powers with those of F-tests obtained under no restrictions on the covariance matrix. The results are illustrated in a multiple regression model with some examples.  相似文献   

13.
The linear Toeplitz covariance structure model of order one is considered. We give some elegant explicit expressions of the Locally Minimum Variance Quadratic Unbiased Estimators of its covariance parameters. We deduce from a Monte Carlo method some properties of their Gaussian maximum likelihood estimators. Finally, for small sample sizes, these two types of estimators are compared with the intuitive empirical estimators and it is shown that the empirical biased estimators should be used.  相似文献   

14.
Complex dependency structures are often conditionally modeled, where random effects parameters are used to specify the natural heterogeneity in the population. When interest is focused on the dependency structure, inferences can be made from a complex covariance matrix using a marginal modeling approach. In this marginal modeling framework, testing covariance parameters is not a boundary problem. Bayesian tests on covariance parameter(s) of the compound symmetry structure are proposed assuming multivariate normally distributed observations. Innovative proper prior distributions are introduced for the covariance components such that the positive definiteness of the (compound symmetry) covariance matrix is ensured. Furthermore, it is shown that the proposed priors on the covariance parameters lead to a balanced Bayes factor, in case of testing an inequality constrained hypothesis. As an illustration, the proposed Bayes factor is used for testing (non-)invariant intra-class correlations across different group types (public and Catholic schools), using the 1982 High School and Beyond survey data.  相似文献   

15.
To build a linear mixed effects model, one needs to specify the random effects and often the associated parametrized covariance matrix structure. Inappropriate specification of the structures can result in the covariance parameters of the model not identifiable. Non-identifiability can result in extraordinary wide confidence intervals, and unreliable parameter inference. Sometimes software produces implication of model non-identifiability, but not always. In the simulation of fitting non-identifiable models we tried, about half of the times the software output did not look abnormal. We derive necessary and sufficient conditions of covariance parameters identifiability which does not require any prior model fitting. The results are easy to implement and are applicable to commonly used covariance matrix structures.  相似文献   

16.
Fisher's method of combining independent tests is used to construct tests of means of multivariate normal populations when the covariance matrix has intraclass correlation structure. Monte Carlo studies are reported which show that the tests are more powerful than Hotelling's T 2-test in both one and two sample situations.  相似文献   

17.
In this article, we consider an inference for a covariance matrix under two-step monotone incomplete sample. The maximum likelihood estimator of the mean vector is unbiased but that of the covariance matrix is biased. We derive an unbiased estimator for the covariance matrix using some fundamental properties of the Wishart matrix. The properties of the estimators are investigated and the accuracies are checked by a numerical simulation.  相似文献   

18.
Scheffé’s mixed model, generalized for application to multivariate repeated measures, is known as the multivariate mixed model (MMM). The primary advantages the MMM are (1) the minimum sample size required to conduct an analysis is smaller than for competing procedures and (2) for certain covariance structures, the MMM analysis is more powerful than its competitors. The primary disadvantage is that the MMM makes a very restrictive covariance assumption; namely multivariate sphericity. This paper shows, first, that even minor departures from multivariate sphericity inflate the size of MMM based tests. Accordingly, MMM analyses, as computed in release 4.0 of SPSS MANOVA (SPSS Inc., 1990), can not be recommended unless it is known that multivariate sphericity is satisfied. Second, it is shown that a new Box-type (Box, 1954) Δ-corrected MMM test adequately controls test size unless departure from multivariate sphericity is severe or the covariance matrix departs substantially from a multiplicative-Kronecker structure. Third, power functions of adjusted MMM tests for selected covariance and noncentrality structures are compared to those of doubly multivariate methods that do not require multivariate sphericity. Based on relative efficiency evaluations, the adjusted MMM analyses described in this paper can be recommended only when sample sizes are very small or there is reason to believe that multivariate sphericity is nearly satisfied. Neither the e-adjusted analysis suggested in the SPSS MANOVA output (release 4.0) nor the adjusted analysis suggested by Boik (1988) can be recommended at all.  相似文献   

19.
In this article, we employ a regression formulation to estimate the high-dimensional covariance matrix for a given network structure. Using prior information contained in the network relationships, we model the covariance as a polynomial function of the symmetric adjacency matrix. Accordingly, the problem of estimating a high-dimensional covariance matrix is converted to one of estimating low dimensional coefficients of the polynomial regression function, which we can accomplish using ordinary least squares or maximum likelihood. The resulting covariance matrix estimator based on the maximum likelihood approach is guaranteed to be positive definite even in finite samples. Under mild conditions, we obtain the theoretical properties of the resulting estimators. A Bayesian information criterion is also developed to select the order of the polynomial function. Simulation studies and empirical examples illustrate the usefulness of the proposed methods.  相似文献   

20.
A. Roy  D. Klein 《Statistics》2018,52(2):393-408
Testing hypotheses about the structure of a covariance matrix for doubly multivariate data is often considered in the literature. In this paper the Rao's score test (RST) is derived to test the block exchangeable covariance matrix or block compound symmetry (BCS) covariance structure under the assumption of multivariate normality. It is shown that the empirical distribution of the RST statistic under the null hypothesis is independent of the true values of the mean and the matrix components of a BCS structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Simulation studies are performed for the sample size consideration, and for the estimation of the empirical quantiles of the null distribution of the test statistic. The RST procedure is illustrated on a real data set from the medical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号