首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

2.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data.  相似文献   

3.
In this paper, the researchers attempt to introduce a new generalization of the Weibull-geometric distribution. The failure rate function of the new model is found to be increasing, decreasing, upside-down bathtub, and bathtub-shaped. The researchers obtained the new model by compounding Weibull distribution and discrete generalized exponential distribution of a second type, which is a generalization of the geometric distribution. The new introduced model contains some previously known lifetime distributions as well as a new one. Some basic distributional properties and moments of the new model are discussed. Estimation of the parameters is illustrated and the model with two known real data sets is examined.  相似文献   

4.
For any continuous baseline G distribution [G.M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Statist. Comput. Simul. 81 (2011), pp. 883–898], proposed a new generalized distribution (denoted here with the prefix ‘Kw-G’ (Kumaraswamy-G)) with two extra positive parameters. They studied some of its mathematical properties and presented special sub-models. We derive a simple representation for the Kw-G density function as a linear combination of exponentiated-G distributions. Some new distributions are proposed as sub-models of this family, for example, the Kw-Chen [Z.A. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), pp. 155–161], Kw-XTG [M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub failure rate function, Reliab. Eng. System Safety 76 (2002), pp. 279–285] and Kw-Flexible Weibull [M. Bebbington, C.D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. System Safety 92 (2007), pp. 719–726]. New properties of the Kw-G distribution are derived which include asymptotes, shapes, moments, moment generating function, mean deviations, Bonferroni and Lorenz curves, reliability, Rényi entropy and Shannon entropy. New properties of the order statistics are investigated. We discuss the estimation of the parameters by maximum likelihood. We provide two applications to real data sets and discuss a bivariate extension of the Kw-G distribution.  相似文献   

5.
ABSTRACT

In this article, we define a new lifetime model called the Weibull–Dagum distribution. The proposed model is based on the Weibull–G class. It can also be defined by a simple transformation of the Weibull random variable. Its density function is very flexible and can be symmetrical, left-skewed, right-skewed, and reversed-J shaped. It has constant, increasing, decreasing, upside-down bathtub, bathtub, and reversed-J shaped hazard rate. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments, and probability weighted moments. We also provide explicit expressions for the Rényi and q-entropies. We derive the density function of the order statistics as a mixture of Dagum densities. We use maximum likelihood to estimate the model parameters and illustrate the potentiality of the new model by means of a simulation study and two applications to real data. In fact, the proposed model outperforms the beta-Dagum, McDonald–Dagum, and Dagum models in these applications.  相似文献   

6.
Many distributions have been used as lifetime models. In this article, we propose a new three-parameter Weibull–Pareto distribution, which can produce the most important hazard rate shapes, namely, constant, increasing, decreasing, bathtub, and upsidedown bathtub. Various structural properties of the new distribution are derived including explicit expressions for the moments and incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, and generating and quantile functions. The Rényi and q entropies are also derived. We obtain the density function of the order statistics and their moments. The model parameters are estimated by maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of two real datasets on Wheaton river flood and bladder cancer. In the two applications, the new model provides better fits than the Kumaraswamy–Pareto, beta-exponentiated Pareto, beta-Pareto, exponentiated Pareto, and Pareto models.  相似文献   

7.
We introduce a three-parameter extension of the exponential distribution which contains as sub-models the exponential, logistic-exponential and Marshall-Olkin exponential distributions. The new model is very flexible and its associated density function can be decreasing or unimodal. Further, it can produce all of the four major shapes of the hazard rate, that is, increasing, decreasing, bathtub and upside-down bathtub. Given that closed-form expressions are available for the survival and hazard rate functions, the new distribution is quite tractable. It can be used to analyze various types of observations including censored data. Computable representations of the quantile function, ordinary and incomplete moments, generating function and probability density function of order statistics are obtained. The maximum likelihood method is utilized to estimate the model parameters. A simulation study is carried out to assess the performance of the maximum likelihood estimators. Two actual data sets are used to illustrate the applicability of the proposed model.  相似文献   

8.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

9.
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79–88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix ‘Kw’) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.  相似文献   

10.
ABSTRACT

The logistic distribution has a prominent role in the theory and practice of statistics. We introduce a new family of continuous distributions generated from a logistic random variable called the logistic-X family. Its density function can be symmetrical, left-skewed, right-skewed, and reversed-J shaped, and can have increasing, decreasing, bathtub, and upside-down bathtub hazard rates shaped. Further, it can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon entropy, and order statistics. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. We also investigate the properties of one special model, the logistic-Fréchet distribution, and illustrate its importance by means of two applications to real data sets.  相似文献   

11.
In this paper, Erlang–Lindley distribution (ErLD) is proposed which offers a more flexible model for waiting time data. It has the property that it can accommodate increasing, bathtub, and inverted bathtub shapes. Several statistical and reliability properties are derived and studied. The moments, its associated measures, and the limiting distributions of order statistics are derived. The model parameters are estimated by maximum likelihood and method of moments. An application of the proposed distribution to some waiting time data shows that it can give a better fit than other important lifetime models.  相似文献   

12.
In this paper, we investigate a generalized gamma distribution recentIy developed by Agarwal and Kalla (1996). Also, we show that such generalized distribution, like the ordinary gamma distribution, has a unique mode and, unlike the ordinary gamma distribution, may have a hazard rate (mean residual life) function which is upside-down bathtub (bathtub) shaped.  相似文献   

13.
We propose a new distribution, the so-called beta-Weibull geometric distribution, whose failure rate function can be decreasing, increasing or an upside-down bathtub. This distribution contains special sub-models the exponential geometric [K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], beta exponential [S. Nadarajah and S. Kotz, The exponentiated type distributions, Acta Appl. Math. 92 (2006), pp. 97–111; The beta exponential distribution, Reliab. Eng. Syst. Saf. 91 (2006), pp. 689–697], Weibull geometric [W. Barreto-Souza, A.L. de Morais, and G.M. Cordeiro, The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645–657], generalized exponential geometric [R.B. Silva, W. Barreto-Souza, and G.M. Cordeiro, A new distribution with decreasing, increasing and upside-down bathtub failure rate, Comput. Statist. Data Anal. 54 (2010), pp. 935–944; G.O. Silva, E.M.M. Ortega, and G.M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal. 16 (2010), pp. 409–430] and beta Weibull [S. Nadarajah, G.M. Cordeiro, and E.M.M. Ortega, General results for the Kumaraswamy-G distribution, J. Stat. Comput. Simul. (2011). DOI: 10.1080/00949655.2011.562504] distributions, among others. The density function can be expressed as a mixture of Weibull density functions. We derive expansions for the moments, generating function, mean deviations and Rénvy entropy. The parameters of the proposed model are estimated by maximum likelihood. The model fitting using envelops was conducted. The proposed distribution gives a good fit to the ozone level data in New York.  相似文献   

14.
Abstract

While the Gompertz distribution is often fitted to lifespan data, testing whether the fit satisfies theoretical criteria is being neglected. Here four goodness-of-fit measures – the Anderson–Darling statistic, the correlation coefficient test, a statistic using moments, and a nested test against the generalized extreme value distributions – are discussed. Along with an application to laboratory rat data, critical values calculated by the empirical distribution of the test statistics are also presented.  相似文献   

15.
We define two new lifetime models called the odd log-logistic Lindley (OLL-L) and odd log-logistic Lindley Poisson (OLL-LP) distributions with various hazard rate shapes such as increasing, decreasing, upside-down bathtub, and bathtub. Various structural properties are derived. Certain characterizations of OLL-L distribution are presented. The maximum likelihood estimators of the unknown parameters are obtained. We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a Poisson distribution and the time to event has an OLL-L distribution. The applicability of the new models is illustrated by means real datasets.  相似文献   

16.
For any continuous baseline G distribution, Zografos and Balakrishnan [On families of beta- and generalized gamma-generated distributions and associated inference. Statist Methodol. 2009;6:344–362] introduced the generalized gamma-generated distribution with an extra positive parameter. A new three-parameter continuous model called the gamma-linear failure rate (LFR) distribution, which extends the LFR model, is proposed and studied. Various structural properties of the new distribution are derived, including some explicit expressions for ordinary and incomplete moments, generating function, probability-weighted moments, mean deviations and Rényi and Shannon entropies. We estimate the model parameters by maximum likelihood and obtain the observed information matrix. The new model is modified to cope with possible long-term survivors in lifetime data. We illustrate the usefulness of the proposed model by means of two applications to real data.  相似文献   

17.
For the first time, a five-parameter distribution, called the Kumaraswamy Burr XII (KwBXII) distribution, is defined and studied. The new distribution contains as special models some well-known distributions discussed in lifetime literature, such as the logistic, Weibull and Burr XII distributions, among several others. We obtain the complete moments, incomplete moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves and reliability of the KwBXII distribution. We provide two representations for the moments of the order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the KwBXII distribution. Three applications to real data sets demonstrate the usefulness of the proposed distribution and that it may attract wider applications in lifetime data analysis.  相似文献   

18.
Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.  相似文献   

19.
ABSTRACT

Recently, Risti? and Nadarajah [A new lifetime distribution. J Stat Comput Simul. 2014;84:135–150] introduced the Poisson generated family of distributions and investigated the properties of a special case named the exponentiated-exponential Poisson distribution. In this paper, we study general mathematical properties of the Poisson-X family in the context of the T-X family of distributions pioneered by Alzaatreh et al. [A new method for generating families of continuous distributions. Metron. 2013;71:63–79], which include quantile, shapes of the density and hazard rate functions, asymptotics and Shannon entropy. We obtain a useful linear representation of the family density and explicit expressions for the ordinary and incomplete moments, mean deviations and generating function. One special lifetime model called the Poisson power-Cauchy is defined and some of its properties are investigated. This model can have flexible hazard rate shapes such as increasing, decreasing, bathtub and upside-down bathtub. The method of maximum likelihood is used to estimate the model parameters. We illustrate the flexibility of the new distribution by means of three applications to real life data sets.  相似文献   

20.
In this article, we give a new family of univariate distributions generated by the Logistic random variable. A special case of this family is the Logistic-Uniform distribution. We show that the Logistic-Uniform distribution provides great flexibility in modeling for symmetric, negatively and positively skewed, bathtub-shaped, “J”-shaped, and reverse “J”-shaped distributions. We discuss simulation issues, estimation by the methods of moments, maximum likelihood, and the new method of minimum spacing distance estimator. We also derive Shannon entropy and asymptotic distribution of the extreme order statistics of this distribution. The new distribution can be used effectively in the analysis of survival data since the hazard function of the distribution can be “J,” bathtub, and concave-convex shaped. The usefulness of the new distribution is illustrated through two real datasets by showing that it is more flexible in analyzing the data than the Beta Generalized-Exponential, Beta-Exponential, Beta-Normal, Beta-Laplace, Beta Generalized half-Normal, β-Birnbaum-Saunders, Gamma-Uniform, Beta Generalized Pareto, Beta Modified Weibull, Beta-Pareto, Generalized Modified Weibull, Beta-Weibull, and Modified-Weibull distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号