首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppose exponential populations π i with parameters (μi , σi ) (i = 1,2,…,k) are given. This article discusses how to select “good” populations in the sense of [Lam (1986 Lam, K. 1986. A new procedure for selecting good populations. Biometrika, 73(1): 201206. [Crossref], [Web of Science ®] [Google Scholar]). A new procedure for selecting good populations. Biometrika 73(1):201–206]. Depending on whether the σ i 's are known or unknown, several one-stage and a two-stage procedure of selection are proposed. The two-stage procedure can be replaced by a one-stage procedure if the second-stage sample is proved intangible. An attracting feature of these procedures is that they need no new statistical tables to implement.  相似文献   

2.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

3.
Consider k independent observations Yi (i= 1,., k) from two-parameter exponential populations i with location parameters μ and the same scale parameter If the μi are ranked as consider population as the “worst” population and IIp(k) as the “best” population (with some tagging so that p{) and p(k) are well defined in the case of equalities). If the Yi are ranked as we consider the procedure, “Select provided YR(k) Yr(k) is sufficiently large so that is demonstrably better than the other populations.” A similar procedure is studied for selecting the “demonstrably worst” population.  相似文献   

4.
Consider k( ? 2) normal populations with unknown means μ1, …, μk, and a common known variance σ2. Let μ[1] ? ??? ? μ[k] denote the ordered μi.The populations associated with the t(1 ? t ? k ? 1) largest means are called the t best populations. Hsu and Panchapakesan (2004) proposed and investigated a procedure RHPfor selecting a non empty subset of the k populations whose size is at most m(1 ? m ? k ? t) so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whenever μ[k ? t + 1] ? μ[k ? t] ? δ*, where P*?and?δ* are specified in advance of the experiment. This probability requirement is known as the indifference-zone probability requirement. In the present article, we investigate the same procedure RHP for the same goal as before but when k ? t < m ? k ? 1 so that at least one of the t best populations is included in the selected subset with a minimum guaranteed probability P* whatever be the configuration of the unknown μi. The probability requirement in this latter case is termed the subset selection probability requirement. Santner (1976) proposed and investigated a different procedure (RS) based on samples of size n from each of the populations, considering both cases, 1 ? m ? k ? t and k ? t < m ? k. The special case of t = 1 was earlier studied by Gupta and Santner (1973) and Hsu and Panchapakesan (2002) for their respective procedures.  相似文献   

5.
6.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

7.
Let be k independent populations having the same known quantile of order p (0 p 1) and let F(x)=F(x/i) be the absolutely continuous cumulative distribution function of the ith population indexed by the scale parameter 1, i = 1,…, k. We propose subset selection procedures based on two-sample U-statistics for selecting a subset of k populations containing the one associated with the smallest scale parameter. These procedures are compared with the subset selection procedures based on two-sample linear rank statistics given by Gill & Mehta (1989) in the sense of Pitman asymptotic relative efficiency, with interesting results.  相似文献   

8.
Let Π1, …, Π p be p(p≥2) independent Poisson populations with unknown parameters θ1, …, θ p , respectively. Let X i denote an observation from the population Π i , 1≤ip. Suppose a subset of random size, which includes the best population corresponding to the largest (smallest) θ i , is selected using Gupta and Huang [On subset selection procedures for Poisson populations and some applications to the multinomial selection problems, in Applied Statistics, R.P. Gupta, ed., North-Holland, Amsterdam, 1975, pp. 97–109] and (Gupta et al. [On subset selection procedures for Poisson populations, Bull. Malaysian Math. Soc. 2 (1979), pp. 89–110]) selection rule. In this paper, the problem of estimating the average worth of the selected subset is considered under the squared error loss function. The natural estimator is shown to be biased and the UMVUE is obtained using Robbins [The UV method of estimation, in Statistical Decision Theory and Related Topics-IV, S.S. Gupta and J.O. Berger, eds., Springer, New York, vol. 1, 1988, pp. 265–270] UV method of estimation. The natural estimator is shown to be inadmissible, by constructing a class of dominating estimators. Using Monte Carlo simulations, the bias and risk of the natural, dominated and UMVU estimators are computed and compared.  相似文献   

9.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

10.
Suppose that we are given k(≥ 2) independent and normally distributed populations π1, …, πk where πi has unknown mean μi and unknown variance σ2 i (i = 1, …, k). Let μ[i] (i = 1, …, k) denote the ith smallest one of μ1, …, μk. A two-stage procedure is used to construct lower and upper confidence intervals for μ[i] and then use these to obtain a class of two-sided confidence intervals on μ[i] with fixed width. For i = k, the interval given by Chen and Dudewicz (1976) is a special case. Comparison is made between the class of two-sided intervals and a symmetric interval proposed by Chen and Dudewicz (1976) for the largest mean, and it is found that for large values of k at least one of the former intervals requires a smaller total sample size. The tables needed to actually apply the procedure are provided.  相似文献   

11.
The problem of simultaneously selecting two non-empty subsets, SLand SU, of k populations which contain the lower extreme population (LEP) and the upper extreme population (UEP), respectively, is considered. Unknown parameters θ1,…,θkcharacterize the populations π1,…,πkand the populations associated with θ[1]=min θi. and θ[k]= max θi. are called the LEP and the UEP, respectively. It is assumed that the underlying distributions possess the monotone likelihood ratio property and that the prior distribution of θ= (θ1,…,θk) is exchangeable. The Bayes rule with respect to a general loss function is obtained. Bayes rule with respect to a semi-additive and non-negative loss function is also determined and it is shown that it is minimax and admissible. When the selected subsets are required to be disjoint, it shown that the Bayes rule with respect to a specific loss function can be obtained by comparing certain computable integrals, Application to normal distributions with unknown means θ1,…,θkand a common known variance is also considered.  相似文献   

12.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

13.
This paper offers a predictive approach for the selection of a fixed number (= t) of treatments from k treatments with the goal of controlling for predictive losses. For the ith treatment, independent observations X ij (j = 1,2,…,n) can be observed where X ij ’s are normally distributed N(θ i ; σ 2). The ranked values of θ i ’s and X i ’s are θ (1) ≤ … ≤ θ (k) and X [1] ≤ … ≤ X [k] and the selected subset S = {[k], [k? 1], … , [k ? t+1]} will be considered. This paper distinguishes between two types of loss functions. A type I loss function associated with a selected subset S is the loss in utility from the selector’s view point and is a function of θ i with i ? S. A type II loss function associated with S measures the unfairness in the selection from candidates’ viewpoint and is a function of θ i with i ? S. This paper shows that under mild assumptions on the loss functions S is optimal and provides the necessary formulae for choosing n so that the two types of loss can be controlled individually or simultaneously with a high probability. Predictive bounds for the losses are provided, Numerical examples support the usefulness of the predictive approach over the design of experiment approach.  相似文献   

14.
Suppose π1,…,πk are k normal populations with πi having unknown mean μi and unknown variance σ2. The population πi will be called δ?-optimal (or good) if μi is within a specified amountδ? of the largest mean. A two stage procedure is proposed which selects a subset of the k populations and guarantees with probability at least P? that the selected subset contains only δ?-optimal πi ’s. In addition to screening out non-good populations the rule guarantees a high proportion of sufficiently good πi’S will be selected.  相似文献   

15.
Given k normal populations with unknown means and a common known variance a two-stage procedure p1 with screening in the first stage to find the population with the largest mean using the indifference-zone approach is under concern. It was proposed and studied previously by Cohen (1959), Alam (1970) and Tamhane and Bechhofer (1977, 1979). But up to now a conjecture concerning the least favorable parameter configuration of p1remained unproved for k ≥ 3. In this paper we give a non-standard proof of the conjecture in case of k = 3 for p1. which (under minor changes) works also for a simplified version of p1,. Besides, a counterexample is provided to show that another (more intuitive) method of proof fails to work.  相似文献   

16.
A test for homogeneity of g ? 2 covariance matrices is presented when the dimension, p, may exceed the sample size, ni, i = 1, …, g, and the populations may not be normal. Under some mild assumptions on covariance matrices, the asymptotic distribution of the test is shown to be normal when ni, p → ∞. Under the null hypothesis, the test is extended for common covariance matrix to be of a specified structure, including sphericity. Theory of U-statistics is employed in constructing the tests and deriving their limits. Simulations are used to show the accuracy of tests.  相似文献   

17.
18.
19.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

20.
It is assumed that k(k?>?2) independent samples of sizes n i (i?=?1, …, k) are available from k lognormal distributions. Four hypothesis cases (H 1H 4) are defined. Under H 1, all k median parameters as well as all k skewness parameters are equal; under H 2, all k skewness parameters are equal but not all k median parameters are equal; under H 3, all k median parameters are equal but not all k skewness parameters are equal; under H 4, neither the k median parameters nor the k skewness parameters are equal. The Expectation Maximization (EM) algorithm is used to obtain the maximum likelihood (ML) estimates of the lognormal parameters in each of these four hypothesis cases. A (2k???1) degree polynomial is solved at each step of the EM algorithm for the H 3 case. A two-stage procedure for testing the equality of the medians either under skewness homogeneity or under skewness heterogeneity is also proposed and discussed. A simulation study was performed for the case k?=?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号