共查询到20条相似文献,搜索用时 20 毫秒
1.
We propose a modification of the moment estimators for the two-parameter weighted Lindley distribution. The modification replaces the second sample moment (or equivalently the sample variance) by a certain sample average which is bounded on the unit interval for all values in the sample space. In this method, the estimates always exist uniquely over the entire parameter space and have consistency and asymptotic normality over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties. Monte Carlo simulation study showed that the proposed modified moment estimators have smaller biases and smaller mean-square errors than the existing moment estimators and are compared favourably with the maximum likelihood estimators in terms of bias and mean-square error. Three illustrative examples are finally presented. 相似文献
2.
Jacob Schwartz 《统计学通讯:理论与方法》2013,42(2):465-478
Using the techniques developed by Subrahmaniam and Ching’anda (1978), we study the robustness to nonnormality of the linear discriminant functions. It is seen that the LDF procedure is quite robust against the likelihood ratio rule. The latter yields in all cases much smaller overall error rates; however, the disparity between the error rates of the LDF and LR procedures is not large enough to warrant the recommendation to use the more complicated LR procedure. 相似文献
3.
J. Mazucheli 《Journal of Statistical Computation and Simulation》2018,88(6):1027-1038
Cooray and Ananda introduced a two-parameter generalized Half-Normal distribution which is useful for modelling lifetime data, while its maximum likelihood estimators (MLEs) are biased in finite samples. This motivates us to construct nearly unbiased estimators for the unknown parameters of the model. In this paper, we adopt two approaches for bias reduction of the MLEs of the parameters of generalized Half-Normal distribution. The first approach is the analytical methodology suggested by Cox and Snell and the second is based on parametric Bootstrap resampling method. Additionally, the method of moments (MMEs) is used for comparison purposes. The numerical evidence shows that the analytic bias-corrected estimators significantly outperform their bootstrapped-based counterpart for small and moderate samples as well as for MLEs and MMEs. Also, it is apparent from the results that bias- corrected estimates of shape parameter perform better than that of scale parameter. Further, the results show that bias-correction scheme yields nearly unbiased estimates. Finally, six fracture toughness real data sets illustrate the application of our methods. 相似文献
4.
ABSTRACTWe derive analytic expressions for the biases, to O(n?1), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators in a selective manner is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error (MSE). In terms of remaining relative bias, the analytic bias-corrected estimators are somewhat less effective than their counterparts obtained by using a parametric bootstrap bias correction. However, the analytic correction out-performs the bootstrap correction in terms of remaining %MSE. It also performs credibly relative to other recently proposed estimators for this distribution. Taking into account the relative computational costs, this leads us to recommend the selective use of the analytic bias adjustment for most practical situations. 相似文献
5.
6.
Ryan T. Godwin 《统计学通讯:理论与方法》2013,42(7):1887-1901
ABSTRACTWe derive an analytic expression for the bias of the maximum likelihood estimator of the parameter in a doubly-truncated Poisson distribution, which proves highly effective as a means of bias correction. For smaller sample sizes, our method outperforms the alternative of bias correction via the parametric bootstrap. Bias is of little concern in the positive Poisson distribution, the most common form of truncation in the applied literature. Bias appears to be the most severe in the doubly-truncated Poisson distribution, when the mean of the distribution is close to the right (upper) truncation. 相似文献
7.
Pedro L. Ramos Francisco Louzada Taciana K. O. Shimizu Aline O. Luiz 《统计学通讯:理论与方法》2019,48(10):2372-2389
In this paper a new distribution is proposed. This new model provides more flexibility to modeling data with upside-down bathtub hazard rate function. A significant account of mathematical properties of the new distribution is presented. The maximum likelihood estimators for the parameters in the presence of complete and censored data are presented. Two corrective approaches are considered to derive modified estimators that are bias-free to second order. A numerical simulation is carried out to examine the efficiency of the bias correction. Finally, an application using a real data set is presented in order to illustrate our proposed distribution. 相似文献
8.
The Danish fire insurance data have recently been modeled by composite distributions, i.e., distributions made up by piecing together two or more distributions. Here, we introduce a new non composite distribution that performs well with respect to the Danish fire insurance data. It fits better than almost all of the commonly known heavy-tailed distributions and some of the composite distributions. 相似文献
9.
《Journal of Statistical Computation and Simulation》2012,82(5):855-880
The weighted distributions provide a comprehensive understanding by adding flexibility in the existing standard distributions. In this article, we considered the weighted Lindley distribution which belongs to the class of the weighted distributions and investigated various its properties. Although, our main focus is the Bayesian analysis however, stochastic ordering, the Bonferroni and the Lorenz curves, various entropies and order statistics derivations are obtained first time for the said distribution. Different types of loss functions are considered; the Bayes estimators and their respective posterior risks are computed and compared. The different reliability characteristics including hazard function, stress and strength analysis, and mean residual life function are also analysed. The Lindley approximation and the importance sampling are described for estimation of parameters. A simulation study is designed to inspect the effect of sample size on the estimated parameters. A real-life application is also presented for the illustration purpose. 相似文献
10.
In this paper, we are interested in the estimation of the reliability parameter R = P(X > Y) where X, a component strength, and Y, a component stress, are independent power Lindley random variables. The point and interval estimation of R, based on maximum likelihood, nonparametric and parametric bootstrap methods, are developed. The performance of the point estimate and confidence interval of R under the considered estimation methods is studied through extensive simulation. A numerical example, based on a real data, is presented to illustrate the proposed procedure. 相似文献
11.
We address the issue of performing inference on the parameters that index the modified extended Weibull (MEW) distribution. We show that numerical maximization of the MEW log-likelihood function can be problematic. It is even possible to encounter maximum likelihood estimates that are not finite, that is, it is possible to encounter monotonic likelihood functions. We consider different penalization schemes to improve maximum likelihood point estimation. A penalization scheme based on the Jeffreys’ invariant prior is shown to be particularly useful. Simulation results on point estimation, interval estimation, and hypothesis testing inference are presented. Two empirical applications are presented and discussed. 相似文献
12.
Inferential analysis for the reliability parameter based on the three-parameter Lindley distribution
ABSTRACTIn this article, we consider the estimation of R = P(Y < X), when Y and X are two independent three-parameter Lindley (LI) random variables. On the basis of two independent samples, the modified maximum likelihood estimator along its asymptotic behavior and conditional likelihood-based estimator are used to estimate R. We also propose sample-based estimate of R and the associated credible interval based on importance sampling procedure. A real life data set involving the times to breakdown of an insulating fluid is presented and analyzed for illustrative purposes. 相似文献
13.
Recently, many articles have obtained analytical expressions for the biases of various maximum likelihood estimators, despite their lack of closed-form solution. These bias expressions have provided an attractive alternative to the bootstrap. Unless the bias function is “flat,” however, the expressions are being evaluated at the wrong point(s). We propose an “improved” analytical bias-adjusted estimator, in which the bias expression is evaluated at a more appropriate point (at the bias adjusted estimator itself). Simulations illustrate that the improved analytical bias-adjusted estimator can eliminate significantly more bias than the simple estimator, which has been well established in the literature. 相似文献
14.
Gamze Ozel Morad Alizadeh Selen Cakmakyapan G. G. Hamedani Vicente G. Cancho 《统计学通讯:模拟与计算》2017,46(8):6513-6537
We define two new lifetime models called the odd log-logistic Lindley (OLL-L) and odd log-logistic Lindley Poisson (OLL-LP) distributions with various hazard rate shapes such as increasing, decreasing, upside-down bathtub, and bathtub. Various structural properties are derived. Certain characterizations of OLL-L distribution are presented. The maximum likelihood estimators of the unknown parameters are obtained. We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a Poisson distribution and the time to event has an OLL-L distribution. The applicability of the new models is illustrated by means real datasets. 相似文献
15.
Several probability distributions have been proposed in the literature, especially with the aim of obtaining models that are more flexible relative to the behaviors of the density and hazard rate functions. Recently, two generalizations of the Lindley distribution were proposed in the literature: the power Lindley distribution and the inverse Lindley distribution. In this article, a distribution is obtained from these two generalizations and named as inverse power Lindley distribution. Some properties of this distribution and study of the behavior of maximum likelihood estimators are presented and discussed. It is also applied considering two real datasets and compared with the fits obtained for already-known distributions. When applied, the inverse power Lindley distribution was found to be a good alternative for modeling survival data. 相似文献
16.
It is shown that the maximum likelihood estimator is superior to the method of moments in estimating the parameter of triangular distributions. It is also shown that the former is not as difficult to calculate as it was previously perceived—thanks to some of its peculiar properties. 相似文献
17.
Guoping Zeng 《统计学通讯:理论与方法》2017,46(22):11194-11203
The problems of existence and uniqueness of maximum likelihood estimates for logistic regression were completely solved by Silvapulle in 1981 and Albert and Anderson in 1984. In this paper, we extend the well-known results by Silvapulle and by Albert and Anderson to weighted logistic regression. We analytically prove the equivalence between the overlap condition used by Albert and Anderson and that used by Silvapulle. We show that the maximum likelihood estimate of weighted logistic regression does not exist if there is a complete separation or a quasicomplete separation of the data points, and exists and is unique if there is an overlap of data points. Our proofs and results for weighted logistic apply to unweighted logistic regression. 相似文献
18.
Pseudo maximum likelihood estimation (PML) for the Dirich-let-multinomial distribution is proposed and examined in this pa-per. The procedure is compared to that based on moments (MM) for its asymptotic relative efficiency (ARE) relative to the maximum likelihood estimate (ML). It is found that PML, requiring much less computational effort than ML and possessing considerably higher ARE than MM, constitutes a good compromise between ML and MM. PML is also found to have very high ARE when an estimate for the scale parameter in the Dirichlet-multinomial distribution is all that is needed. 相似文献
19.
This paper deals with estimation of parameters and the mean life of a mixed failure time distribution that has a discrete probability mass at zero and an exponential distribution with mean O for positive values. A new sampling scheme similar to Jayade and Prasad (1990) is proposed for estimation of parameters. We derive expressions for biases and mean square errors (MSEs) of the maximum likelihood estimators (MLEs). We also obtain the uniformly minimum variance unbiased estimators (UMVUEs) of the parameters. We compare the estimator of O and mean life fj based on the proposed sampling scheme with the estimators obtained by using the sampling scheme of Jayade and Prasad (1990). 相似文献
20.
Emílio A. Coelho-Barros Josmar Mazucheli Jorge A. Achcar Kelly Vanessa Parede Barco José Rafael Tovar Cuevas 《Journal of applied statistics》2018,45(11):2081-2094
In this study, classical and Bayesian inference methods are introduced to analyze lifetime data sets in the presence of left censoring considering two generalizations of the Lindley distribution: a first generalization proposed by Ghitany et al. [Power Lindley distribution and associated inference, Comput. Statist. Data Anal. 64 (2013), pp. 20–33], denoted as a power Lindley distribution and a second generalization proposed by Sharma et al. [The inverse Lindley distribution: A stress–strength reliability model with application to head and neck cancer data, J. Ind. Prod. Eng. 32 (2015), pp. 162–173], denoted as an inverse Lindley distribution. In our approach, we have used a distribution obtained from these two generalizations denoted as an inverse power Lindley distribution. A numerical illustration is presented considering a dataset of thyroglobulin levels present in a group of individuals with differentiated cancer of thyroid. 相似文献