共查询到20条相似文献,搜索用时 15 毫秒
1.
This article evaluates the economic benefit of methods that have been suggested to optimally sample (in an MSE sense) high-frequency return data for the purpose of realized variance/covariance estimation in the presence of market microstructure noise (Bandi and Russell, 2005a, 2008). We compare certainty equivalents derived from volatility-timing trading strategies relying on optimally-sampled realized variances and covariances, on realized variances and covariances obtained by sampling every 5 minutes, and on realized variances and covariances obtained by sampling every 15 minutes. In our sample, we show that a risk-averse investor who is given the option of choosing variance/covariance forecasts derived from MSE-based optimal sampling methods versus forecasts obtained from 5- and 15-minute intervals (as generally proposed in the literature) would be willing to pay up to about 80 basis points per year to achieve the level of utility that is guaranteed by optimal sampling. We find that the gains yielded by optimal sampling are economically large, statistically significant, and robust to realistic transaction costs. 相似文献
2.
This article evaluates the economic benefit of methods that have been suggested to optimally sample (in an MSE sense) high-frequency return data for the purpose of realized variance/covariance estimation in the presence of market microstructure noise (Bandi and Russell, 2005a, 2008). We compare certainty equivalents derived from volatility-timing trading strategies relying on optimally-sampled realized variances and covariances, on realized variances and covariances obtained by sampling every 5 minutes, and on realized variances and covariances obtained by sampling every 15 minutes. In our sample, we show that a risk-averse investor who is given the option of choosing variance/covariance forecasts derived from MSE-based optimal sampling methods versus forecasts obtained from 5- and 15-minute intervals (as generally proposed in the literature) would be willing to pay up to about 80 basis points per year to achieve the level of utility that is guaranteed by optimal sampling. We find that the gains yielded by optimal sampling are economically large, statistically significant, and robust to realistic transaction costs. 相似文献
3.
In this paper we review some of recent developments in high dimensional data analysis, especially in the estimation of covariance and precision matrix, asymptotic results on the eigenstructure in the principal components analysis, and some relevant issues such as test on the equality of two covariance matrices, determination of the number of principal components, and detection of hubs in a complex network. 相似文献
4.
We propose a method to estimate the intraday volatility of a stock by integrating the instantaneous conditional return variance per unit time obtained from the autoregressive conditional duration (ACD) model, called the ACD-ICV method. We compare the daily volatility estimated using the ACD-ICV method against several versions of the realized volatility (RV) method, including the bipower variation RV with subsampling, the realized kernel estimate, and the duration-based RV. Our Monte Carlo results show that the ACD-ICV method has lower root mean-squared error than the RV methods in almost all cases considered. This article has online supplementary material. 相似文献
5.
Dong Wan Shin 《Journal of the Korean Statistical Society》2018,47(4):395-404
Forecast methods for realized volatilities are reviewed. Basic theoretical and empirical features of realized volatilities as well as versions of estimators of realized volatility are briefly investigated. Major forecast models featuring the empirical aspects of persistency and asymmetry are discussed in terms of forecasting models for which the heterogeneous autoregressive (HAR) model is one of the most basic one in the recent literature. Forecast methods addressing the issues of jump, break, implied volatility, and market microstructure noise are reviewed. Forecasting realized covariance matrix is also considered. 相似文献
6.
The continuous quadratic variation of asset return plays a critical role for high-frequency trading. However, the microstructure noise could bias the estimation of the continuous quadratic variation. Zhang et al. (2005) proposed a batch estimator for the continuous quadratic variation of high-frequency data in the presence of microstructure noise. It gives the estimates after all the data arrive. This article proposes a recursive version of their estimator that outputs variation estimates as the data arrive. Our estimator gives excellent estimates well before all the data arrive. Both real high-frequency futures data and simulation data confirm the performance of the recursive estimator. 相似文献
7.
We introduce the realized exponential GARCH model that can use multiple realized volatility measures for the modeling of a return series. The model specifies the dynamic properties of both returns and realized measures, and is characterized by a flexible modeling of the dependence between returns and volatility. We apply the model to 27 stocks and an exchange traded fund that tracks the S&P 500 index and find specifications with multiple realized measures that dominate those that rely on a single realized measure. The empirical analysis suggests some convenient simplifications and highlights the advantages of the new specification. 相似文献
8.
We examine moving average (MA) filters for estimating the integrated variance (IV) of a financial asset price in a framework where high-frequency price data are contaminated with market microstructure noise. We show that the sum of squared MA residuals must be scaled to enable a suitable estimator of IV. The scaled estimator is shown to be consistent, first-order efficient, and asymptotically Gaussian distributed about the integrated variance under restrictive assumptions. Under more plausible assumptions, such as time-varying volatility, the MA model is misspecified. This motivates an extensive simulation study of the merits of the MA-based estimator under misspecification. Specifically, we consider nonconstant volatility combined with rounding errors and various forms of dependence between the noise and efficient returns. We benchmark the scaled MA-based estimator to subsample and realized kernel estimators and find that the MA-based estimator performs well despite the misspecification. 相似文献
9.
We examine moving average (MA) filters for estimating the integrated variance (IV) of a financial asset price in a framework where high-frequency price data are contaminated with market microstructure noise. We show that the sum of squared MA residuals must be scaled to enable a suitable estimator of IV. The scaled estimator is shown to be consistent, first-order efficient, and asymptotically Gaussian distributed about the integrated variance under restrictive assumptions. Under more plausible assumptions, such as time-varying volatility, the MA model is misspecified. This motivates an extensive simulation study of the merits of the MA-based estimator under misspecification. Specifically, we consider nonconstant volatility combined with rounding errors and various forms of dependence between the noise and efficient returns. We benchmark the scaled MA-based estimator to subsample and realized kernel estimators and find that the MA-based estimator performs well despite the misspecification. 相似文献
10.
This article introduces a new model for transaction prices in the presence of market microstructure noise in order to study the properties of the price process on two different time scales, namely, transaction time where prices are sampled with every transaction and tick time where prices are sampled with every price change. Both sampling schemes have been used in the literature on realized variance, but a formal investigation into their properties has been lacking. Our empirical and theoretical results indicate that the return dynamics in transaction time are very different from those in tick time and the choice of sampling scheme can therefore have an important impact on the properties of realized variance. For RV we find that tick time sampling is superior to transaction time sampling in terms of mean-squared-error, especially when the level of noise, number of ticks, or the arrival frequency of efficient price moves is low. Importantly, we show that while the microstructure noise may appear close to IID in transaction time, in tick time it is highly dependent. As a result, bias correction procedures that rely on the noise being independent, can fail in tick time and are better implemented in transaction time. 相似文献
11.
This article introduces a new model for transaction prices in the presence of market microstructure noise in order to study the properties of the price process on two different time scales, namely, transaction time where prices are sampled with every transaction and tick time where prices are sampled with every price change. Both sampling schemes have been used in the literature on realized variance, but a formal investigation into their properties has been lacking. Our empirical and theoretical results indicate that the return dynamics in transaction time are very different from those in tick time and the choice of sampling scheme can therefore have an important impact on the properties of realized variance. For RV we find that tick time sampling is superior to transaction time sampling in terms of mean-squared-error, especially when the level of noise, number of ticks, or the arrival frequency of efficient price moves is low. Importantly, we show that while the microstructure noise may appear close to IID in transaction time, in tick time it is highly dependent. As a result, bias correction procedures that rely on the noise being independent, can fail in tick time and are better implemented in transaction time. 相似文献
12.
13.
It is widely accepted that some financial data exhibit long memory or long dependence, and that the observed data usually possess noise. In the continuous time situation, the factional Brownian motion BH and its extension are an important class of models to characterize the long memory or short memory of data, and Hurst parameter H is an index to describe the degree of dependence. In this article, we estimate the Hurst parameter of a discretely sampled fractional integral process corrupted by noise. We use the preaverage method to diminish the impact of noise, employ the filter method to exclude the strong dependence, and obtain the smoothed data, and estimate the Hurst parameter by the smoothed data. The asymptotic properties such as consistency and asymptotic normality of the estimator are established. Simulations for evaluating the performance of the estimator are conducted. Supplementary materials for this article are available online. 相似文献
14.
15.
Thomas J. Fisher 《Journal of statistical planning and inference》2012,142(1):312-326
This article explores the problem of testing the hypothesis that the covariance matrix is an identity matrix when the dimensionality is equal to the sample size or larger. Two new test statistics are proposed under comparable assumptions to those statistics in the literature. The asymptotic distribution of the proposed test statistics are found and are shown to be consistent in the general asymptotic framework. An extensive simulation study shows the newly proposed tests are comparable to, and in some cases more powerful than, the tests for an identity covariance matrix currently in the literature. 相似文献
16.
This article investigates the merits of high-frequency intraday data when forming mean-variance efficient stock portfolios with daily rebalancing from the individual constituents of the S&P 100 index. We focus on the issue of determining the optimal sampling frequency as judged by the performance of these portfolios. The optimal sampling frequency ranges between 30 and 65 minutes, considerably lower than the popular five-minute frequency, which typically is motivated by the aim of striking a balance between the variance and bias in covariance matrix estimates due to market microstructure effects such as non-synchronous trading and bid-ask bounce. Bias-correction procedures, based on combining low-frequency and high-frequency covariance matrix estimates and on the addition of leads and lags do not substantially affect the optimal sampling frequency or the portfolio performance. Our findings are also robust to the presence of transaction costs and to the portfolio rebalancing frequency. 相似文献
17.
This article investigates the merits of high-frequency intraday data when forming mean-variance efficient stock portfolios with daily rebalancing from the individual constituents of the S&P 100 index. We focus on the issue of determining the optimal sampling frequency as judged by the performance of these portfolios. The optimal sampling frequency ranges between 30 and 65 minutes, considerably lower than the popular five-minute frequency, which typically is motivated by the aim of striking a balance between the variance and bias in covariance matrix estimates due to market microstructure effects such as non-synchronous trading and bid-ask bounce. Bias-correction procedures, based on combining low-frequency and high-frequency covariance matrix estimates and on the addition of leads and lags do not substantially affect the optimal sampling frequency or the portfolio performance. Our findings are also robust to the presence of transaction costs and to the portfolio rebalancing frequency. 相似文献
18.
AbstractBased on the fact that realized measures of volatility are affected by measurement errors, we introduce a new family of discrete-time stochastic volatility models having two measurement equations relating both observed returns and realized measures to the latent conditional variance. A semi-analytical option pricing framework is developed for this class of models. In addition, we provide analytical filtering and smoothing recursions for the basic specification of the model, and an effective MCMC algorithm for its richer variants. The empirical analysis shows the effectiveness of filtering and smoothing realized measures in inflating the latent volatility persistence—the crucial parameter in pricing Standard and Poor’s 500 Index options. 相似文献
19.
20.
This article proposes a simple nonparametric method to estimate the jump characteristics in asset price with noisy high-frequency data. We combine the pre-averaging approach and the threshold technique to identify the jumps, and then propose the pre-averaging threshold estimators for the number and sizes of jumps occurred. We further present the asymptotic properties of the proposed estimators. The Monte Carlo simulation shows that the estimators are robust to microstructure noise and work very well especially when the data frequency is ultra-high. Finally, an empirical example further demonstrates the power of the proposed method. 相似文献