首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
This paper deals with the estimation of R=P[X<Y] when X and Y come from two independent generalized logistic distributions with different parameters. The maximum-likelihood estimator (MLE) and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Assuming that the common scale parameter is known, the MLE, uniformly minimum variance unbiased estimator, Bayes estimation and confidence interval of R are obtained. The MLE of R, asymptotic distribution of R in the general case, is also discussed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real data set has also been presented for illustrative purposes.  相似文献   

2.
This paper deals with the estimation of the stress–strength parameter R=P(Y<X), when X and Y are independent exponential random variables, and the data obtained from both distributions are progressively type-II censored. The uniformly minimum variance unbiased estimator and the maximum-likelihood estimator (MLE) are obtained for the stress–strength parameter. Based on the exact distribution of the MLE of R, an exact confidence interval of R has been obtained. Bayes estimate of R and the associated credible interval are also obtained under the assumption of independent inverse gamma priors. An extensive computer simulation is used to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose.  相似文献   

3.
I am concerned with the admissibility under quadratic loss of certain estimators of binomial probabilities. The minimum variance unbiased estimator is shown to be admissible for Pr(X = 0) and Pr(X = n), but it is inadmissible for Pr(X = k), where 0 < k < n. An example is given of an admissible maximum likelihood estimator (MLE). It is conjectured that the MLE is always admissible.  相似文献   

4.
In this article, we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a growth curve model. The maximum likelihood estimator (MLE) for the mean in a growth curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. The MLE for the covariance matrix is based on the MLE for the mean, which can be very poor for p close to N. For both structures (a) and (b), we modify the MLE for the mean to an unweighted estimator and based on this estimator we propose a new estimator for the covariance matrix. This new estimator leads to new tests for (a) and (b). We also propose two other tests for each structure, which are just based on the sample covariance matrix.

To compare the performance of all four tests we compute for each structure (a) and (b) the attained significance level and the empirical power. We show that one of the tests based on the sample covariance matrix is better than the likelihood ratio test based on the MLE.  相似文献   


5.
We consider the problem of estimating and testing a general linear hypothesis in a general multivariate linear model, the so-called Growth Curve model, when the p × N observation matrix is normally distributed.

The maximum likelihood estimator (MLE) for the mean is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. We modify the MLE to an unweighted estimator and propose new tests which we compare with the previous likelihood ratio test (LRT) based on the weighted estimator, i.e., the MLE. We show that the performance of these new tests based on the unweighted estimator is better than the LRT based on the MLE.  相似文献   


6.
For the lifetime (or negative) exponential distribution, the trimmed likelihood estimator has been shown to be explicit in the form of a β‐trimmed mean which is representable as an estimating functional that is both weakly continuous and Fréchet differentiable and hence qualitatively robust at the parametric model. It also has high efficiency at the model. The robustness is in contrast to the maximum likelihood estimator (MLE) involving the usual mean which is not robust to contamination in the upper tail of the distribution. When there is known right censoring, it may be perceived that the MLE which is the most asymptotically efficient estimator may be protected from the effects of ‘outliers’ due to censoring. We demonstrate that this is not the case generally, and in fact, based on the functional form of the estimators, suggest a hybrid defined estimator that incorporates the best features of both the MLE and the β‐trimmed mean. Additionally, we study the pure trimmed likelihood estimator for censored data and show that it can be easily calculated and that the censored observations are not always trimmed. The different trimmed estimators are compared by a modest simulation study.  相似文献   

7.
In this article, maximum likelihood estimator (MLE) as well as Bayes estimator of traffic intensity (ρ) in an M/M/1/∞ queueing model in equilibrium based on number of customers present in the queue at successive departure epochs have been worked out. Estimates of some functions of ρ which provide measures of effectiveness of the queue have also been derived. A comprehensive simulation study starting with the transition probability matrix has been carried out in the last section.  相似文献   

8.
The aim of this paper is to study the estimation of the reliability R=P(Y<X) when X and Y are independent random variables that follow Kumaraswamy's distribution with different parameters. If we assume that the first shape parameter is common and known, the maximum-likelihood estimator (MLE), the exact confidence interval and the uniformly minimum variance unbiased estimator of R are obtained. Moreover, when the first parameter is common but unknown, MLEs, Bayes estimators, asymptotic distributions and confidence intervals for R are derived. Furthermore, Bayes and empirical Bayes estimators for R are obtained when the first parameter is common and known. Finally, when all four parameters are different and unknown, the MLE of R is obtained. Monte Carlo simulations are performed to compare the different proposed methods and conclusions on the findings are given.  相似文献   

9.
Let X 1, X 2, ..., X n be a random sample from a normal population with mean μ and variance σ 2. In many real life situations, specially in lifetime or reliability estimation, the parameter μ is known a priori to lie in an interval [a, ∞). This makes the usual maximum likelihood estimator (MLE) ̄ an inadmissible estimator of μ with respect to the squared error loss. This is due to the fact that it may take values outside the parameter space. Katz (1961) and Gupta and Rohatgi (1980) proposed estimators which lie completely in the given interval. In this paper we derive some new estimators for μ and present a comparative study of the risk performance of these estimators. Both the known and unknown variance cases have been explored. The new estimators are shown to have superior risk performance over the existing ones over large portions of the parameter space.  相似文献   

10.
Let X1, …, Xn be i.i.d. from a discrete probability mass function (pmf) p. In Balabdaoui et al. [(2013), ‘Asymptotic Distribution of the Discrete Log-Concave mle and Some Applications’, JRSS-B, in press], the pointwise limit distribution of the log-concave maximum-likelihood estimator (MLE) was derived in both the well- and misspecified settings. In the well-specified setting, the geometric distribution was excluded, classified as being degenerate. In this article, we establish the global asymptotic theory of the log-concave MLE of a geometric pmf in all ?q distances for q∈{1, 2, …}∪{∞}. We also show how these asymptotic results could be used in testing whether a pmf is geometric.  相似文献   

11.
Among criteria for the least squares estimator in a linear model (y, , V) to be simultaneously the best linear unbiased estimator, one convenient for applications is that of Anderson (1971, 1972). His result, however, has been developed under assumptions of full column rank for X and nonsingularity for V. Subsequently, this result has been extended by Styan (1973) to the case when the restriction on X is removed. In this note, it is shown that also the restriction on V can be relaxed and, consequently, that Anderson's criterion is applicable to the general linear model without any rank assumptions at all.  相似文献   

12.
Simultaneous robust estimates of location and scale parameters are derived from minimizing a minimum-distance criterion function. The criterion function measures the squared distance between the pth power (p > 0) of the empirical distribution function and the pth power of the imperfectly determined model distribution function over the real line. We show that the estimator is uniquely defined, is asymptotically bivariate normal and for p > 0.3 has positive breakdown. If the scale parameter is known, when p = 0.9 the asymptotic variance (1.0436) of the location estimator for the normal model is smaller than the asymptotic variance of the Hodges-Lehmann (HL)estimator (1.0472). Efficiencies with respect to HL and maximum-likelihood estimators (MLE) are 1.0034 and 0.9582, respectively. Similarly, if the location parameter is known, when p = 0.97 the asymptotic variance (0.6158) of the scale estimator is minimum. The efficiency with respect to the MLE is 0.8119. We show that the estimator can tolerate more corrupted observations at oo than at – for p < 1, and vice versa for p > 1.  相似文献   

13.

This paper is concerned with properties (bias, standard deviation, mean square error and efficiency) of twenty six estimators of the intraclass correlation in the analysis of binary data. Our main interest is to study these properties when data are generated from different distributions. For data generation we considered three over-dispersed binomial distributions, namely, the beta-binomial distribution, the probit normal binomial distribution and a mixture of two binomial distributions. The findings regarding bias, standard deviation and mean squared error of all these estimators, are that (a) in general, the distributions of biases of most of the estimators are negatively skewed. The biases are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution; (b) the standard deviations are smallest when data are generated from the beta-binomial distribution; and (c) the mean squared errors are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution. Of the 26, nine estimators including the maximum likelihood estimator, an estimator based on the optimal quadratic estimating equations of Crowder (1987), and an analysis of variance type estimator is found to have least amount of bias, standard deviation and mean squared error. Also, the distributions of the bias, standard deviation and mean squared error for each of these estimators are, in general, more symmetric than those of the other estimators. Our findings regarding efficiency are that the estimator based on the optimal quadratic estimating equations has consistently high efficiency and least variability in the efficiency results. In the important range in which the intraclass correlation is small (≤0 5), on the average, this estimator shows best efficiency performance. The analysis of variance type estimator seems to do well for larger values of the intraclass correlation. In general, the estimator based on the optimal quadratic estimating equations seems to show best efficiency performance for data from the beta-binomial distribution and the probit normal binomial distribution, and the analysis of variance type estimator seems to do well for data from the mixture distribution.  相似文献   

14.
When two‐component parallel systems are tested, the data consist of Type‐II censored data X(i), i= 1, n, from one component, and their concomitants Y [i] randomly censored at X(r), the stopping time of the experiment. Marshall & Olkin's (1967) bivariate exponential distribution is used to illustrate statistical inference procedures developed for this data type. Although this data type is motivated practically, the likelihood is complicated, and maximum likelihood estimation is difficult, especially in the case where the parameter space is a non‐open set. An iterative algorithm is proposed for finding maximum likelihood estimates. This article derives several properties of the maximum likelihood estimator (MLE) including existence, uniqueness, strong consistency and asymptotic distribution. It also develops an alternative estimation method with closed‐form expressions based on marginal distributions, and derives its asymptotic properties. Compared with variances of the MLEs in the finite and large sample situations, the alternative estimator performs very well, especially when the correlation between X and Y is small.  相似文献   

15.
In a model for rounded data suppose that the random sample X1,.,.,Xn,. i.i.d., is transformed into an observed random sample X,.,.,X, where X = 2vΔ if Xi, ∈ (2vΔ - Δ, 2vΔ + Δ), for i = 1,.,.,n. We show that the precision Δ of the observations has an important effect on the shape of the kernel density estimator, and we identify important points for the graphical display of this estimator. We examine the IMSE criteria to find the optimal window under the rounded-data model.  相似文献   

16.
A semiparametric estimator based on an unknown density isuniformly adaptive if the expected loss of the estimator converges to the asymptotic expected loss of the maximum liklihood estimator based on teh true density (MLE), and if convergence does not depend on either the parameter values or the form of the unknown density. Without uniform adaptivity, the asymptotic expected loss of the MLE need not approximate the expected loss of a semiparametric estimator for any finite sample I show that a two step semiparametric estimator is uniformly adaptive for the parameters of nonlinear regression models with autoregressive moving average errors.  相似文献   

17.
It is not uncommon to encounter a randomized clinical trial (RCT) in which each patient is treated with several courses of therapies and his/her response is taken after treatment with each course because of the nature of a treatment design for a disease. On the basis of a simple multiplicative risk model proposed elsewhere for repeated binary measurements, we derive the maximum likelihood estimator (MLE) for the proportion ratio (PR) of responses between two treatments in closed form without the need of modeling the complicated relationship between patient’s compliance and patient’s response. We further derive the asymptotic variance of the MLE and propose an asymptotic interval estimator for the PR using the logarithmic transformation. We also consider two other asymptotic interval estimators. One is derived from the principle of Fieller’s Theorem and the other is derived by using the randomization-based approach suggested elsewhere. To evaluate and compare the finite-sample performance of these interval estimators, we apply the Monte Carlo simulation. We find that the interval estimator using the logarithmic transformation of the MLE consistently outperforms the other two estimators with respect to efficiency. This gain in efficiency can be substantial especially when there are patients not complying with their assigned treatments. Finally, we employ the data regarding the trial of using macrophage colony stimulating factor (M-CSF) over three courses of intensive chemotherapies to reduce febrile neutropenia incidence for acute myeloid leukemia patients to illustrate the use of these estimators.  相似文献   

18.
Weibull distributions have received wide ranging applications in many areas including reliability, hydrology and communication systems. Many estimation methods have been proposed for Weibull distributions. But there has not been a comprehensive comparison of these estimation methods. Most studies have focused on comparing the maximum likelihood estimation (MLE) with one of the other approaches. In this paper, we first propose an L-moment estimator for the Weibull distribution. Then, a comprehensive comparison is made of the following methods: the method of maximum likelihood estimation (MLE), the method of logarithmic moments, the percentile method, the method of moments and the method of L-moments.  相似文献   

19.
Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X1,…,Xd)+ϵ, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and ϵ is the error term. In this article, we investigate the behavior of the least squares estimator of f. We generalize the greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we test whether the multivariate isotonic regression function at a fixed point is larger (or smaller) than a specified value or not based on this estimator, and the consistency of the test is established. The practicability of the estimator and the test are shown on simulated and real data as well.  相似文献   

20.
Estimation of the correlation coefficient between two variates (p) in the presence of correlated observations from a bivar iate normal population is considered The estimated maximum likelihood estimator (EMLE), an estimate based on the maximum likelihood estimator (MLE), is proposed and studied for the estimation of p For the large sample case , approximate expressions foi the variance and the bias of the Pearson estimate of the correlation coefficient are derived. These expressions suggests that the Pearson’s estimator possesses high mean square error (MSE) in estimating ρ in comparison to the MLE The MSE is particularly high when the observations within clusters aie highly correlated. The Pearson’s estimate, the MLE, and the EMLE aie evaluated in a simulation study This study shows that the proposed EMLE pefoims bettei than the Pearson’s correlation coefficient except when the number of clusters is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号