首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.  相似文献   

2.
Penalised likelihood methods, such as the least absolute shrinkage and selection operator (Lasso) and the smoothly clipped absolute deviation penalty, have become widely used for variable selection in recent years. These methods impose penalties on regression coefficients to shrink a subset of them towards zero to achieve parameter estimation and model selection simultaneously. The amount of shrinkage is controlled by the regularisation parameter. Popular approaches for choosing the regularisation parameter include cross‐validation, various information criteria and bootstrapping methods that are based on mean square error. In this paper, a new data‐driven method for choosing the regularisation parameter is proposed and the consistency of the method is established. It holds not only for the usual fixed‐dimensional case but also for the divergent setting. Simulation results show that the new method outperforms other popular approaches. An application of the proposed method to motif discovery in gene expression analysis is included in this paper.  相似文献   

3.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

4.
In this article, we present a new efficient iteration estimation approach based on local modal regression for single-index varying-coefficient models. The resulted estimators are shown to be robust with regardless of outliers and error distributions. The asymptotic properties of the estimators are established under some regularity conditions and a practical modified EM algorithm is proposed for the new method. Moreover, to achieve sparse estimator when there exists irrelevant variables in the index parameters, a variable selection procedure based on SCAD penalty is developed to select significant parametric covariates and the well-known oracle properties are also derived. Finally, some numerical examples with various distributed errors and a real data analysis are conducted to illustrate the validity and feasibility of our proposed method.  相似文献   

5.
The varying coefficient model (VCM) is an important generalization of the linear regression model and many existing estimation procedures for VCM were built on L 2 loss, which is popular for its mathematical beauty but is not robust to non-normal errors and outliers. In this paper, we address the problem of both robustness and efficiency of estimation and variable selection procedure based on the convex combined loss of L 1 and L 2 instead of only quadratic loss for VCM. By using local linear modeling method, the asymptotic normality of estimation is driven and a useful selection method is proposed for the weight of composite L 1 and L 2. Then the variable selection procedure is given by combining local kernel smoothing with adaptive group LASSO. With appropriate selection of tuning parameters by Bayesian information criterion (BIC) the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the new method is investigated through simulation studies and the analysis of body fat data. Numerical studies show that the new method is better than or at least as well as the least square-based method in terms of both robustness and efficiency for variable selection.  相似文献   

6.
In this article we present a robust and efficient variable selection procedure by using modal regression for varying-coefficient models with longitudinal data. The new method is proposed based on basis function approximations and a group version of the adaptive LASSO penalty, which can select significant variables and estimate the non-zero smooth coefficient functions simultaneously. Under suitable conditions, we establish the consistency in variable selection and the oracle property in estimation. A simulation study and two real data examples are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

7.
This article considers the adaptive lasso procedure for the accelerated failure time model with multiple covariates based on weighted least squares method, which uses Kaplan-Meier weights to account for censoring. The adaptive lasso method can complete the variable selection and model estimation simultaneously. Under some mild conditions, the estimator is shown to have sparse and oracle properties. We use Bayesian Information Criterion (BIC) for tuning parameter selection, and a bootstrap variance approach for standard error. Simulation studies and two real data examples are carried out to investigate the performance of the proposed method.  相似文献   

8.
As a useful supplement to mean regression, quantile regression is a completely distribution-free approach and is more robust to heavy-tailed random errors. In this paper, a variable selection procedure for quantile varying coefficient models is proposed by combining local polynomial smoothing with adaptive group LASSO. With an appropriate selection of tuning parameters by the BIC criterion, the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the newly proposed method is investigated through simulation studies and the analysis of Boston house price data. Numerical studies confirm that the newly proposed procedure (QKLASSO) has both robustness and efficiency for varying coefficient models irrespective of error distribution, which is a good alternative and necessary supplement to the KLASSO method.  相似文献   

9.
Partial linear varying coefficient models are often used in real data analysis for a good balance between flexibility and parsimony. In this paper, we propose a robust adaptive model selection method based on the rank regression, which can do simultaneous coefficient estimation and three types of selections, i.e., varying and constant effects selection, relevant variable selection. The new method has superiority in robustness and efficiency by inheriting the advantage of the rank regression approach. Furthermore, consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies also confirm our method.  相似文献   

10.
In this paper, we propose a new full iteration estimation method for quantile regression (QR) of the single-index model (SIM). The asymptotic properties of the proposed estimator are derived. Furthermore, we propose a variable selection procedure for the QR of SIM by combining the estimation method with the adaptive LASSO penalized method to get sparse estimation of the index parameter. The oracle properties of the variable selection method are established. Simulations with various non-normal errors are conducted to demonstrate the finite sample performance of the estimation method and the variable selection procedure. Furthermore, we illustrate the proposed method by analyzing a real data set.  相似文献   

11.
12.
面板数据的自适应Lasso分位回归方法研究   总被引:1,自引:0,他引:1  
如何在对参数进行估计的同时自动选择重要解释变量,一直是面板数据分位回归模型中讨论的热点问题之一。通过构造一种含多重随机效应的贝叶斯分层分位回归模型,在假定固定效应系数先验服从一种新的条件Laplace分布的基础上,给出了模型参数估计的Gibbs抽样算法。考虑到不同重要程度的解释变量权重系数压缩程度应该不同,所构造的先验信息具有自适应性的特点,能够准确地对模型中重要解释变量进行自动选取,且设计的切片Gibbs抽样算法能够快速有效地解决模型中各个参数的后验均值估计问题。模拟结果显示,新方法在参数估计精确度和变量选择准确度上均优于现有文献的常用方法。通过对中国各地区多个宏观经济指标的面板数据进行建模分析,演示了新方法估计参数与挑选变量的能力。  相似文献   

13.
This paper considers the problem of selecting optimal bandwidths for variable (sample‐point adaptive) kernel density estimation. A data‐driven variable bandwidth selector is proposed, based on the idea of approximating the log‐bandwidth function by a cubic spline. This cubic spline is optimized with respect to a cross‐validation criterion. The proposed method can be interpreted as a selector for either integrated squared error (ISE) or mean integrated squared error (MISE) optimal bandwidths. This leads to reflection upon some of the differences between ISE and MISE as error criteria for variable kernel estimation. Results from simulation studies indicate that the proposed method outperforms a fixed kernel estimator (in terms of ISE) when the target density has a combination of sharp modes and regions of smooth undulation. Moreover, some detailed data analyses suggest that the gains in ISE may understate the improvements in visual appeal obtained using the proposed variable kernel estimator. These numerical studies also show that the proposed estimator outperforms existing variable kernel density estimators implemented using piecewise constant bandwidth functions.  相似文献   

14.
This paper considers robust variable selection in semiparametric modeling for longitudinal data with an unspecified dependence structure. First, by basis spline approximation and using a general formulation to treat mean, median, quantile and robust mean regressions in one setting, we propose a weighted M-type regression estimator, which achieves robustness against outliers in both the response and covariates directions, and can accommodate heterogeneity, and the asymptotic properties are also established. Furthermore, a penalized weighted M-type estimator is proposed, which can do estimation and select relevant nonparametric and parametric components simultaneously, and robustly. Without any specification of error distribution and intra-subject dependence structure, the variable selection method works beautifully, including consistency in variable selection and oracle property in estimation. Simulation studies also confirm our method and theories.  相似文献   

15.
Our article presents a general treatment of the linear regression model, in which the error distribution is modelled nonparametrically and the error variances may be heteroscedastic, thus eliminating the need to transform the dependent variable in many data sets. The mean and variance components of the model may be either parametric or nonparametric, with parsimony achieved through variable selection and model averaging. A Bayesian approach is used for inference with priors that are data-based so that estimation can be carried out automatically with minimal input by the user. A Dirichlet process mixture prior is used to model the error distribution nonparametrically; when there are no regressors in the model, the method reduces to Bayesian density estimation, and we show that in this case the estimator compares favourably with a well-regarded plug-in density estimator. We also consider a method for checking the fit of the full model. The methodology is applied to a number of simulated and real examples and is shown to work well.  相似文献   

16.
We propose a new algorithm for simultaneous variable selection and parameter estimation for the single-index quantile regression (SIQR) model . The proposed algorithm, which is non iterative , consists of two steps. Step 1 performs an initial variable selection method. Step 2 uses the results of Step 1 to obtain better estimation of the conditional quantiles and , using them, to perform simultaneous variable selection and estimation of the parametric component of the SIQR model. It is shown that the initial variable selection method consistently estimates the relevant variables , and the estimated parametric component derived in Step 2 satisfies the oracle property.  相似文献   

17.
Motivated by the need to analyze the National Longitudinal Surveys data, we propose a new semiparametric longitudinal mean‐covariance model in which the effects on dependent variable of some explanatory variables are linear and others are non‐linear, while the within‐subject correlations are modelled by a non‐stationary autoregressive error structure. We develop an estimation machinery based on least squares technique by approximating non‐parametric functions via B‐spline expansions and establish the asymptotic normality of parametric estimators as well as the rate of convergence for the non‐parametric estimators. We further advocate a new model selection strategy in the varying‐coefficient model framework, for distinguishing whether a component is significant and subsequently whether it is linear or non‐linear. Besides, the proposed method can also be employed for identifying the true order of lagged terms consistently. Monte Carlo studies are conducted to examine the finite sample performance of our approach, and an application of real data is also illustrated.  相似文献   

18.
Efficient statistical inference on nonignorable missing data is a challenging problem. This paper proposes a new estimation procedure based on composite quantile regression (CQR) for linear regression models with nonignorable missing data, that is applicable even with high-dimensional covariates. A parametric model is assumed for modelling response probability, which is estimated by the empirical likelihood approach. Local identifiability of the proposed strategy is guaranteed on the basis of an instrumental variable approach. A set of data-based adaptive weights constructed via an empirical likelihood method is used to weight CQR functions. The proposed method is resistant to heavy-tailed errors or outliers in the response. An adaptive penalisation method for variable selection is proposed to achieve sparsity with high-dimensional covariates. Limiting distributions of the proposed estimators are derived. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. An application to the ACTG 175 data is analysed.  相似文献   

19.
Nonparametric density estimation in the presence of measurement error is considered. The usual kernel deconvolution estimator seeks to account for the contamination in the data by employing a modified kernel. In this paper a new approach based on a weighted kernel density estimator is proposed. Theoretical motivation is provided by the existence of a weight vector that perfectly counteracts the bias in density estimation without generating an excessive increase in variance. In practice a data driven method of weight selection is required. Our strategy is to minimize the discrepancy between a standard kernel estimate from the contaminated data on the one hand, and the convolution of the weighted deconvolution estimate with the measurement error density on the other hand. We consider a direct implementation of this approach, in which the weights are optimized subject to sum and non-negativity constraints, and a regularized version in which the objective function includes a ridge-type penalty. Numerical tests suggest that the weighted kernel estimation can lead to tangible improvements in performance over the usual kernel deconvolution estimator. Furthermore, weighted kernel estimates are free from the problem of negative estimation in the tails that can occur when using modified kernels. The weighted kernel approach generalizes to the case of multivariate deconvolution density estimation in a very straightforward manner.  相似文献   

20.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号