首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The authors consider variance estimation for the generalized regression estimator in a two‐phase context when the first‐phase sample has been restratified using information gathered from the first‐phase sample. Simple computational expressions for variance estimation are provided for the double expansion estimator and the reweighted expansion estimator of Kott & Stukel (1997). These estimators are compared using data from the Canadian Retail Commodity Survey.  相似文献   

2.
ABSTRACT

In this paper, assuming that there exist omitted variables in the specified model, we analytically derive the exact formula for the mean squared error (MSE) of a heterogeneous pre-test (HPT) estimator whose components are the ordinary least squares (OLS) and feasible ridge regression (FRR) estimators. Since we cannot examine the MSE performance analytically, we execute numerical evaluations to investigate small sample properties of the HPT estimator, and compare the MSE performance of the HPT estimator with those of the FRR estimator and the usual OLS estimator. Our numerical results show that (1) the HPT estimator is more efficient when the model misspecification is severe; (2) the HPT estimator with the optimal critical value obtained under the correctly specified model can be safely used even when there exist omitted variables in the specified model.  相似文献   

3.
In this paper, assuming that there exist omitted explanatory variables in the specified model, we derive the exact formula for the mean squared error (MSE) of a general family of shrinkage estimators for each individual regression coefficient. It is shown analytically that when our concern is to estimate each individual regression coefficient, the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators under some conditions even when the relevant regressors are omitted. Also, by numerical evaluations, we showed the effects of our theorem for several specific cases. It is shown that the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators for wide region of parameter space even when there exist omitted variables in the specified model.  相似文献   

4.
Singh and Arnab (2010) presented a bias adjustment to the jackknife variance estimator of Rao and Sitter (1995) in the presence of non-response. In their paper, they obtained a second-order approximation of the bias of the Rao-Sitter variance estimator and then proposed a bias-adjusted estimator based on this approximation. To compare their proposed variance estimator to various other variance estimators, they performed a simulation study and showed that their variance estimator is superior to the Rao-Sitter variance estimator. In fact they showed that the Rao-Sitter variance estimator suffers from severe underestimation. These results contradict those in the literature, which indicate that the Rao-Sitter variance estimator suffers from a positive bias if the sampling fractions are not negligible; see Rao and Sitter (1995), Lee et al. (1995) and Haziza and Picard (2011). Because of this contradiction, we felt that a further investigation was warranted. In this paper, we attempt to recreate the results of Singh and Arnab (2010) and, in fact, show that their second order approximation to the bias of the Rao-Sitter variance estimator is incorrect and that their simulation results are also questionable.  相似文献   

5.
Pao-sheng Shen 《Statistics》2013,47(2):315-326
In this article, we consider nonparametric estimation of the survival function when the data are subject to left-truncation and right-censoring and the sample size before truncation is known. We propose two estimators. The first estimator is derived based on a self-consistent estimating equation. The second estimator is obtained by using the constrained expectation-maximization algorithm. Simulation results indicate that both estimators are more efficient than the product-limit estimator. When there is no censoring, the performance of the proposed estimators is compared with that of the estimator proposed by Li and Qin [Semiparametric likelihood-based inference for biased and truncated data when total sample size is known, J. R. Stat. Soc. B 60 (1998), pp. 243–254] via simulation study.  相似文献   

6.
In this paper, we derive the exact general expressions for the moments of an ordinary ridge regression (ORR) estimator for individual regression coefficients in a different way from Firinguetti (1987). Using the derived expressions, we evaluate numerically the first four moments of the ORR estimator, and examine its bias, mean square error, skewness and kurtosis. Further, Monte Carlo experiments are carried out in order to examine the shape of the density function of the ORR estimator.  相似文献   

7.
We derive the optimal regression function (i.e., the best approximation in the L2 sense) when the vector of covariates has a random dimension. Furthermore, we consider applications of these results to problems in statistical regression and classification with missing covariates. It will be seen, perhaps surprisingly, that the correct regression function for the case with missing covariates can sometimes perform better than the usual regression function corresponding to the case with no missing covariates. This is because even if some of the covariates are missing, an indicator random variable δδ, which is always observable, and is equal to 1 if there are no missing values (and 0 otherwise), may have far more information and predictive power about the response variable Y than the missing covariates do. We also propose kernel-based procedures for estimating the correct regression function nonparametrically. As an alternative estimation procedure, we also consider the least-squares method.  相似文献   

8.
Despite the popularity and importance, there is limited work on modelling data which come from complex survey design using finite mixture models. In this work, we explored the use of finite mixture regression models when the samples were drawn using a complex survey design. In particular, we considered modelling data collected based on stratified sampling design. We developed a new design-based inference where we integrated sampling weights in the complete-data log-likelihood function. The expectation–maximisation algorithm was developed accordingly. A simulation study was conducted to compare the new methodology with the usual finite mixture of a regression model. The comparison was done using bias-variance components of mean square error. Additionally, a simulation study was conducted to assess the ability of the Bayesian information criterion to select the optimal number of components under the proposed modelling approach. The methodology was implemented on real data with good results.  相似文献   

9.
A kernel estimator of a derivative of arbitrary order of a nonparametric average population curve is considered for a correlated-errors model with balanced replicate measurements at each design point. Asymptotic expansions of the mean squared error are derived for two classes of correlation functions in the model. Consistency, choice of smoothing parameter, and rates of convergence are examined for the important special cases of estimating the first and second derivatives.  相似文献   

10.
The balanced half-sample, jackknife and linearization methods are used to estimate the variance of the slope of a linear regression under a variety of computer generated situations. The basic sampling design is one in which two PSU's are selected from each of a number of strata . The variance estimation techniques are compared with a Monte Carlo experiment. Results show that variance estimates may be highly biased and variable unless sizeable numbers of observations are available from each stratum. The jackknife and linearization estimates appear superior to the balanced half sample method - particularly when the number of strata or the number of available observations from each stratum is small.  相似文献   

11.
This article discusses a consistent and almost unbiased estimation approach in partial linear regression for parameters of interest when the regressors are contaminated with a mixture of Berkson and classical errors. Advantages of the presented procedure are: (1) random errors and observations are not necessarily to be parametric settings; (2) there is no need to use additional sample information, and to consider the estimation of nuisance parameters. We will examine the performance of our presented estimate in a variety of numerical examples through Monte Carlo simulation. The proposed approach is also illustrated in the analysis of an air pollution data.  相似文献   

12.
Risk estimation is an important statistical question for the purposes of selecting a good estimator (i.e., model selection) and assessing its performance (i.e., estimating generalization error). This article introduces a general framework for cross-validation and derives distributional properties of cross-validated risk estimators in the context of estimator selection and performance assessment. Arbitrary classes of estimators are considered, including density estimators and predictors for both continuous and polychotomous outcomes. Results are provided for general full data loss functions (e.g., absolute and squared error, indicator, negative log density). A broad definition of cross-validation is used in order to cover leave-one-out cross-validation, V-fold cross-validation, Monte Carlo cross-validation, and bootstrap procedures. For estimator selection, finite sample risk bounds are derived and applied to establish the asymptotic optimality of cross-validation, in the sense that a selector based on a cross-validated risk estimator performs asymptotically as well as an optimal oracle selector based on the risk under the true, unknown data generating distribution. The asymptotic results are derived under the assumption that the size of the validation sets converges to infinity and hence do not cover leave-one-out cross-validation. For performance assessment, cross-validated risk estimators are shown to be consistent and asymptotically linear for the risk under the true data generating distribution and confidence intervals are derived for this unknown risk. Unlike previously published results, the theorems derived in this and our related articles apply to general data generating distributions, loss functions (i.e., parameters), estimators, and cross-validation procedures.  相似文献   

13.
We investigate the issue of bandwidth estimation in a functional nonparametric regression model with function-valued, continuous real-valued and discrete-valued regressors under the framework of unknown error density. Extending from the recent work of Shang (2013 Shang, H.L. (2013), ‘Bayesian Bandwidth Estimation for a Nonparametric Functional Regression Model with Unknown Error Density’, Computational Statistics &; Data Analysis, 67, 185198. doi: 10.1016/j.csda.2013.05.006[Crossref], [Web of Science ®] [Google Scholar]) [‘Bayesian Bandwidth Estimation for a Nonparametric Functional Regression Model with Unknown Error Density’, Computational Statistics &; Data Analysis, 67, 185–198], we approximate the unknown error density by a kernel density estimator of residuals, where the regression function is estimated by the functional Nadaraya–Watson estimator that admits mixed types of regressors. We derive a likelihood and posterior density for the bandwidth parameters under the kernel-form error density, and put forward a Bayesian bandwidth estimation approach that can simultaneously estimate the bandwidths. Simulation studies demonstrated the estimation accuracy of the regression function and error density for the proposed Bayesian approach. Illustrated by a spectroscopy data set in the food quality control, we applied the proposed Bayesian approach to select the optimal bandwidths in a functional nonparametric regression model with mixed types of regressors.  相似文献   

14.
Simultaneous estimation of the location parameter μ and scale parameter σ of a normal distribution based on two selected sample quantiles out of sufficiently large sample of size n is considered. The optimal spacing which maximizes the asymptotic relative efficiency is proved to be symmetric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号