首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  This paper proposes a constrained empirical likelihood confidence region for a parameter in the semi-linear errors-in-variables model. The confidence region is constructed by combining the score function corresponding to the squared orthogonal distance with a constraint on the parameter, and it overcomes that the solution of limiting mean estimation equations is not unique. It is shown that the empirical log likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation of generalized least squares estimator in most cases. A real data example is given.  相似文献   

2.
Abstract

The Poisson distribution is here used to illustrate Bayesian inference concepts with the ultimate goal to construct credible intervals for a mean. The evaluation of the resulting intervals is in terms of “mismatched” priors and posteriors. The discussion is in the form of an imaginary dialog between a teacher and a student, who have met earlier, discussing and evaluating the Wald and score confidence intervals, as well as confidence intervals based on transformation and bootstrap techniques. From the perspective of the student the learning process is akin to a real research situation. The student is supposed to have studied mathematical statistics for at least two semesters.  相似文献   

3.
Estimators for quantiles based on linear combinations of order statistics have been proposed by Harrell and Davis(1982) and kaigh and Lachenbruch (1982). Both estimators have been demonstrated to be at least as efficient for small sample point estimation as an ordinary sample quantile estimator based on one or two order statistics: Distribution-free confidence intervals for quantiles can be constructed using either of the two approaches. By means of a simulation study, these confidence intervals have been compared with several other methods of constructing confidence intervals for quantiles in small samples. For the median, the Kaigh and Lachenbruch method performed fairly well. For other quantiles, no method performed better than the method which uses pairs of order statistics.  相似文献   

4.
A problem of interest in a variance component analysis is the construction of a confidence interval on the variance of a single observation. This article considers an unbalanced two-fold nested classification with equal subsampling and compares two methods for constructing this interval . Computer simulations indicate that one of these methods in general will provide an interval that has an achieved confidence coefficient at least as great as the stated value.  相似文献   

5.
In this study, we investigate the concept of the mean response for a treatment group mean as well as its estimation and prediction for generalized linear models with a subject‐wise random effect. Generalized linear models are commonly used to analyze categorical data. The model‐based mean for a treatment group usually estimates the response at the mean covariate. However, the mean response for the treatment group for studied population is at least equally important in the context of clinical trials. New methods were proposed to estimate such a mean response in generalized linear models; however, this has only been done when there are no random effects in the model. We suggest that, in a generalized linear mixed model (GLMM), there are at least two possible definitions of a treatment group mean response that can serve as estimation/prediction targets. The estimation of these treatment group means is important for healthcare professionals to be able to understand the absolute benefit vs risk. For both of these treatment group means, we propose a new set of methods that suggests how to estimate/predict both of them in a GLMMs with a univariate subject‐wise random effect. Our methods also suggest an easy way of constructing corresponding confidence and prediction intervals for both possible treatment group means. Simulations show that proposed confidence and prediction intervals provide correct empirical coverage probability under most circumstances. Proposed methods have also been applied to analyze hypoglycemia data from diabetes clinical trials.  相似文献   

6.
In regression scenarios there is a growing demand for information on the conditional distribution of the response beyond the mean. In this scenario quantile regression is an established method of tail analysis. It is well understood in terms of asymptotic properties and estimation quality. Another way to look at the tail of a distribution is via expectiles. They provide a valuable alternative since they come with a combination of preferable attributes. The easy weighted least squares estimation of expectiles and the quadratic penalties often used in flexible regression models are natural partners. Also, in a similar way as quantiles can be seen as a generalisation of median regression, expectiles offer a generalisation of mean regression. In addition to regression estimates, confidence intervals are essential for interpretational purposes and to assess the variability of the estimate, but there is a lack of knowledge regarding the asymptotic properties of a semiparametric expectile regression estimate. Therefore confidence intervals for expectiles based on an asymptotic normal distribution are introduced. Their properties are investigated by a simulation study and compared to a boostrap-based gold standard method. Finally the introduced confidence intervals help to evaluate a geoadditive expectile regression model on childhood malnutrition data from India.  相似文献   

7.
We investigate the convergence rates of uniform bias-corrected confidence intervals for a smooth curve using local polynomial regression for both the interior and boundary region. We discuss the cases when the degree of the polynomial is odd and even. The uniform confidence intervals are based on the volume-of-tube formula modified for biased estimators. We empirically show that the proposed uniform confidence intervals attain, at least approximately, nominal coverage. Finally, we investigate the performance of the volume-of-tube based confidence intervals for independent non-Gaussian errors.  相似文献   

8.
This article studies the construction of a Bayesian confidence interval for the ratio of marginal probabilities in matched-pair designs. Under a Dirichlet prior distribution, the exact posterior distribution of the ratio is derived. The tail confidence interval and the highest posterior density (HPD) interval are studied, and their frequentist performances are investigated by simulation in terms of mean coverage probability and mean expected length of the interval. An advantage of Bayesian confidence interval is that it is always well defined for any data structure and has shorter mean expected width. We also find that the Bayesian tail interval at Jeffreys prior performs as well as or better than the frequentist confidence intervals.  相似文献   

9.
Summary.  We construct approximate confidence intervals for a nonparametric regression function, using polynomial splines with free-knot locations. The number of knots is determined by generalized cross-validation. The estimates of knot locations and coefficients are obtained through a non-linear least squares solution that corresponds to the maximum likelihood estimate. Confidence intervals are then constructed based on the asymptotic distribution of the maximum likelihood estimator. Average coverage probabilities and the accuracy of the estimate are examined via simulation. This includes comparisons between our method and some existing methods such as smoothing spline and variable knots selection as well as a Bayesian version of the variable knots method. Simulation results indicate that our method works well for smooth underlying functions and also reasonably well for discontinuous functions. It also performs well for fairly small sample sizes.  相似文献   

10.
Simultaneous confidence intervals for the p means of a multivariate normal random variable with known variances may be generated by the projection method of Scheffé and by the use of Bonferroni's inequality. It has been conjectured that the Bonferroni intervals are shorter than the Scheffé intervals, at least for the usual confidence levels. This conjecture is proved for all p≥2 and all confidence levels above 50%. It is shown, incidentally, that for all p≥2 Scheffé's intervals are shorter for sufficiently small confidence levels. The results are also applicable to the Bonferroni and Scheffé intervals generated for multinomial proportions.  相似文献   

11.
This article introduces mean-minimum (MM) exact confidence intervals for a binomial probability. These intervals guarantee that both the mean and the minimum frequentist coverage never drop below specified values. For example, an MM 95[93]% interval has mean coverage at least 95% and minimum coverage at least 93%. In the conventional sense, such an interval can be viewed as an exact 93% interval that has mean coverage at least 95% or it can be viewed as an approximate 95% interval that has minimum coverage at least 93%. Graphical and numerical summaries of coverage and expected length suggest that the Blaker-based MM exact interval is an attractive alternative to, even an improvement over, commonly recommended approximate and exact intervals, including the Agresti–Coull approximate interval, the Clopper–Pearson (CP) exact interval, and the more recently recommended CP-, Blaker-, and Sterne-based mean-coverage-adjusted approximate intervals.  相似文献   

12.
This article studies the construction of a Bayesian confidence interval for risk difference in a 2×2 table with structural zero. The exact posterior distribution of the risk difference is derived under the Dirichlet prior distribution, and a tail-based interval is used to construct the Bayesian confidence interval. The frequentist performance of the tail-based interval is investigated and compared with the score-based interval by simulation. Our results show that the tail-based interval at Jeffreys prior performs as well as or better than the score-based confidence interval.  相似文献   

13.
A simulation study was done to compare seven confidence interval methods, based on the normal approximation, for the difference of two binomial probabilities. Cases considered included minimum expected cell sizes ranging from 2 to 15 and smallest group sizes (NMIN) ranging from 6 to 100. Our recommendation is to use a continuity correction of 1/(2 NMIN) combined with the use of (N ? 1) rather than N in the estimate of the standard error. For all of the cases considered with minimum expected cell size of at least 3, this method gave coverage probabilities close to or greater than the nominal 90% and 95%. The Yates method is also acceptable, but it is slightly more conservative. At the other extreme, the usual method (with no continuity correction) does not provide adequate coverage even at the larger sample sizes. For the 99% intervals, our recommended method and the Yates correction performed equally well and are reasonable for minimum expected cell sizes of at least 5. None of the methods performed consistently well for a minimum expected cell size of 2.  相似文献   

14.
Franklin and Wasserman (1991) introduced the use of Bootstrap sampling procedures for deriving nonparametric confidence intervals for the process capability index, Cpk, which are applicable for instances when at least twenty data points are available. This represents a significant reduction in the usually recommended sample requirement of 100 observations (see Gunther 1989). To facilitate and encourage the use of these procedures. a FORTRAN program is provided for computation of confidence intervals for Cpk. Three methods are provided for this calculation including the standard method, the percentile confidence interval, and the biased - corrected percentile confidence interval.  相似文献   

15.
The method of constructing confidence intervals from hypothesis tests is studied in the case in which there is a single unknown parameter and is proved to provide confidence intervals with coverage probability that is at least the nominal level. The confidence intervals obtained by the method in several different contexts are seen to compare favorably with confidence intervals obtained by traditional methods. The traditional intervals are seen to have coverage probability less than the nominal level in several instances, This method can be applied to all confidence interval problems and reduces to the traditional method when an exact pivotal statistic is known.  相似文献   

16.
In past studies various criteria have been proposed for evaluating the performance of a confidence set. However, each of these criteria often causes some unsatisfactory results even for the standard models such as location model, scale model and multinormal model. In this article, we propose a new criterion so that the procedure of the confidence set estimation based on the criterion can lead to a desirable confidence set at least for the above models. The approach is on the basis of an improvement of the Neyman shortness according to two steps. The first step is some kind of theoretical improvement, referring to a proposal of Pratt. As a result, we get a solution to Pratt's paradox. In the second step, we adopt a kind of robust or minimax procedure without sticking to the uniform optimality. In conclusion, it is shown that the procedure based on our criterion produces a desirable and acceptable confidence set.  相似文献   

17.
The problem of selecting s out of k given compounts which contains at least c of the t best ones is considered. In the case of underlying distribution families with location or scale parameter it is shown that the indiffence zone approach can be strengthened to confidence statements for the parameters of the selected components. These confidence statements are valid over the entire parameter space without decreasing the infimum of the probability of a correct selection.  相似文献   

18.
Even elementary statistical problems may give rise to a deeper and broader discussion of issues in probability and statistics. The construction of an approximate confidence interval for a Poisson mean turns out to be such a case. The simple standard two-sided Wald confidence interval by normal approximation is discussed and compared with the score interval. The discussion is partly in the form of an imaginary dialog between a teacher and a student, where the latter is supposed to have studied mathematical statistics for at least one semester.  相似文献   

19.
A robust estimate of the correlation coefficient for a bivariate normal distribution using balanced ranked set sampling is studied. We show that this estimate is at least as efficient as the corresponding estimate based on simple random sampling and highly efficient compared to the maximum likelihood estimate using balanced ranked set sampling. The estimate is robust to common ranking errors. Small sample performance of the estimate is studied by simulation under imperfect and perfect ranking. A variance stabilizing transformation for the confidence interval of the correlation coefficient is obtained.  相似文献   

20.
For evaluating diagnostic accuracy of inherently continuous diagnostic tests/biomarkers, sensitivity and specificity are well-known measures both of which depend on a diagnostic cut-off, which is usually estimated. Sensitivity (specificity) is the conditional probability of testing positive (negative) given the true disease status. However, a more relevant question is “what is the probability of having (not having) a disease if a test is positive (negative)?”. Such post-test probabilities are denoted as positive predictive value (PPV) and negative predictive value (NPV). The PPV and NPV at the same estimated cut-off are correlated, hence it is desirable to make the joint inference on PPV and NPV to account for such correlation. Existing inference methods for PPV and NPV focus on the individual confidence intervals and they were developed under binomial distribution assuming binary instead of continuous test results. Several approaches are proposed to estimate the joint confidence region as well as the individual confidence intervals of PPV and NPV. Simulation results indicate the proposed approaches perform well with satisfactory coverage probabilities for normal and non-normal data and, additionally, outperform existing methods with improved coverage as well as narrower confidence intervals for PPV and NPV. The Alzheimer's Disease Neuroimaging Initiative (ADNI) data set is used to illustrate the proposed approaches and compare them with the existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号