首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract

Acceptance sampling plans are quality tools for the manufacturer and the customer. The ultimate result of reduction of nonconforming items will increase the profit of the manufacturer and enhance the satisfaction of the consumer. In this article, a mixed double sampling plan is proposed in which the attribute double sampling inspection is used in the first stage and a variables sampling plan based on the process capability index Cpk is used in the second stage. The optimal parameters are determined so that the producer’s and the consumer’s risks are to be satisfied with minimum average sample number. The optimal parameters of the proposed plan are estimated using different plan settings using two points on the operating characteristic curve approach. In designing the proposed mixed double sampling plan, we consider the symmetric and asymmetric nonconforming cases under variables inspection. The efficiency of the proposed plan is discussed and compared with the existing sampling plans. Tables are constructed for easy selection of the optimal plan parameters and an industrial example is also included for implementation of the proposed plan.  相似文献   

2.
In this paper, an optimization model is developed for the economic design of a rectifying inspection sampling plan in the presence of two markets. A product with a normally distributed quality characteristic with unknown mean and variance is produced in the process. The quality characteristic has a lower specification limit. The aim of this paper is to maximize the profit, which consists the Taguchi loss function, under the constraints of satisfying the producer's and consumer's risk in two different markets simultaneously. Giveaway cost per unit of sold excess material is considered in the proposed model. A case study is presented to illustrate the application of proposed methodology. In addition, sensitivity analysis is performed to study the effect of model parameters on the expected profit and optimal solution. Optimal process adjustment problem and acceptance sampling plan is combined in the economical optimization model. Also, process mean and standard deviation are assumed to be unknown value, and their impact is analyzed. Finally, inspection error is considered, and its impact is investigated and analyzed.  相似文献   

3.
Complex models can only be realized a limited number of times due to large computational requirements. Methods exist for generating input parameters for model realizations including Monte Carlo simulation (MCS) and Latin hypercube sampling (LHS). Recent algorithms such as maximinLHS seek to maximize the minimum distance between model inputs in the multivariate space. A novel extension of Latin hypercube sampling (LHSMDU) for multivariate models is developed here that increases the multidimensional uniformity of the input parameters through sequential realization elimination. Correlations are considered in the LHSMDU sampling matrix using a Cholesky decomposition of the correlation matrix. Computer code implementing the proposed algorithm supplements this article. A simulation study comparing MCS, LHS, maximinLHS and LHSMDU demonstrates that increased multidimensional uniformity can significantly improve realization efficiency and that LHSMDU is effective for large multivariate problems.  相似文献   

4.
In this paper, we propose a general class of Gamma frailty transformation models for multivariate survival data. The transformation class includes the commonly used proportional hazards and proportional odds models. The proposed class also includes a family of cure rate models. Under an improper prior for the parameters, we establish propriety of the posterior distribution. A novel Gibbs sampling algorithm is developed for sampling from the observed data posterior distribution. A simulation study is conducted to examine the properties of the proposed methodology. An application to a data set from a cord blood transplantation study is also reported.  相似文献   

5.
A weighted linear estimator (WLE) of the parameters of multivariate ARCH models is proposed. The accuracy of WLE in estimating the parameters of multivariate ARCH models is compared with the widely used quasi-maximum likelihood estimator (QMLE) through simulations. Application to real data sets are also presented and forecasts of variance-covariance matrix and value-at-risk (VaR) are obtained. The weighted resampling methods are used to approximate the sampling distribution of the proposed estimator. Our study indicates that the forecasting performance of WLE is not inferior and one-day ahead risk estimates are also found better than the QMLE.  相似文献   

6.
A Bayesian elastic net approach is presented for variable selection and coefficient estimation in linear regression models. A simple Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the Bayesian elastic net prior for the regression coefficients. The penalty parameters are chosen through an empirical method that maximizes the data marginal likelihood. Both simulated and real data examples show that the proposed method performs well in comparison to the other approaches.  相似文献   

7.
A general framework is proposed for modelling clustered mixed outcomes. A mixture of generalized linear models is used to describe the joint distribution of a set of underlying variables, and an arbitrary function relates the underlying variables to be observed outcomes. The model accommodates multilevel data structures, general covariate effects and distinct link functions and error distributions for each underlying variable. Within the framework proposed, novel models are developed for clustered multiple binary, unordered categorical and joint discrete and continuous outcomes. A Markov chain Monte Carlo sampling algorithm is described for estimating the posterior distributions of the parameters and latent variables. Because of the flexibility of the modelling framework and estimation procedure, extensions to ordered categorical outcomes and more complex data structures are straightforward. The methods are illustrated by using data from a reproductive toxicity study.  相似文献   

8.
A class of simultaneous tests based on the aligned rank transform (ART) statistics is proposed for linear functions of parameters in linear models. The asymptotic distributions are derived. The stability of the finite sample behaviour of the sampling distribution of the ART technique is studied by comparing the simulated upper quantiles of its sampling distribution with those of the multivariate t-distribution. Simulation also shows that the tests based on ART have excellent small sample properties and because of their robustness perform better than the methods based on the least-squares estimates.  相似文献   

9.
Particle Markov Chain Monte Carlo methods are used to carry out inference in nonlinear and non-Gaussian state space models, where the posterior density of the states is approximated using particles. Current approaches usually perform Bayesian inference using either a particle marginal Metropolis–Hastings (PMMH) algorithm or a particle Gibbs (PG) sampler. This paper shows how the two ways of generating variables mentioned above can be combined in a flexible manner to give sampling schemes that converge to a desired target distribution. The advantage of our approach is that the sampling scheme can be tailored to obtain good results for different applications. For example, when some parameters and the states are highly correlated, such parameters can be generated using PMMH, while all other parameters are generated using PG because it is easier to obtain good proposals for the parameters within the PG framework. We derive some convergence properties of our sampling scheme and also investigate its performance empirically by applying it to univariate and multivariate stochastic volatility models and comparing it to other PMCMC methods proposed in the literature.  相似文献   

10.
The authors offer a unified method extending traditional spatial dependence with normally distributed error terms to a new class of spatial models based on the biparametric exponential family of distributions. Joint modeling of the mean and variance (or precision) parameters is proposed in this family of distributions, including spatial correlation. The proposed models are applied for analyzing Colombian land concentration, assuming that the variable of interest follows normal, gamma, and beta distributions. In all cases, the models were fitted using Bayesian methodology with the Markov Chain Monte Carlo (MCMC) algorithm for sampling from joint posterior distribution of the model parameters.  相似文献   

11.
In this study, we propose three new sampling plans based on yield index CpuA for linear profiles with one-sided specifications, including the resubmitted sampling plan, the repetitive group sampling plan, and the multiple dependent state repetitive sampling plan. The operating characteristic functions of our proposed sampling plans are developed. The plan parameters of our proposed sampling plans are determined through nonlinear optimization. The plan parameters are reported for various combinations of acceptable quality level and limiting quality level. The three sampling plans are compared with the existing single sampling plan in terms of the average sample number. A real example is used to illustrate the applications.  相似文献   

12.
A method is suggested to estimate posterior model probabilities and model averaged parameters via MCMC sampling under a Bayesian approach. The estimates use pooled output for J models (J>1) whereby all models are updated at each iteration. Posterior probabilities are based on averages of continuous weights obtained for each model at each iteration, while samples of averaged parameters are obtained from iteration specific averages that are based on these weights. Parallel sampling of models assists in deriving posterior densities for parameter contrasts between models and in assessing hypotheses regarding model averaged parameters. Four worked examples illustrate application of the approach, two involving fixed effect regression, and two involving random effects.  相似文献   

13.
The design parameters of the economic and economic statistical designs of control charts depend on the distribution of process failure mechanism or shock model. So far, only a small number of failure distributions, such as exponential, gamma, and Weibull with fixed or increasing hazard rates, have been used as a shock model in the economic and economic statistical designs of the Hotelling T2 control charts. Due to both theoretical and practical aspects, the lifetime of the process under study may not follow a distribution with fixed or increasing hazard rate. A proper alternative for this situation may be the Burr distribution, in which the hazard rate can be fixed, increasing, decreasing, single mode, or even U-shaped. In this research article, economic and economic statistical designs of the Hotelling T2 control charts under the Burr XII shock models under two uniform and non uniform sampling schemes were proposed, constructed, and compared. The obtained design models were implemented by a numerical example, and a sensitivity analysis was conducted to evaluate the effect of changing parameters of shock model distribution on the optimum values of the proposed design models. The results showed that first the proposed designs under non uniform sampling scheme perform better and second the optimum values of the designs are not significantly sensitive to changing of the Burr XII distribution parameters. We showed that the obtained design models are also true for the beta Burr XII shock model.  相似文献   

14.
15.
Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms can be efficiently applied in Bayesian inference for hidden Markov models (HMMs), when the number of latent regimes is unknown. As for finite mixture models, when priors are invariant to the relabelling of the regimes, HMMs are unidentifiable in data fitting, because multiple ways to label the regimes can alternate during the MCMC iterations; this is the so-called label switching problem. HMMs with an unknown number of regimes are considered here and the goal of this paper is the comparison, both applied and theoretical, of five methods used for tackling label switching within a RJMCMC algorithm; they are: post-processing, partial reordering, permutation sampling, sampling from a Markov prior and rejection sampling. The five strategies we compare have been proposed mostly in the literature of finite mixture models and only two of them, i.e. rejection sampling and partial reordering, have been presented in RJMCMC algorithms for HMMs. We consider RJMCMC algorithms in which the parameters are updated by Gibbs sampling and the dimension of the model changes in split-and-merge and birth-and-death moves. Finally, an example illustrates and compares the five different methodologies.  相似文献   

16.
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.  相似文献   

17.
There are two generations of Gibbs sampling methods for semiparametric models involving the Dirichlet process. The first generation suffered from a severe drawback: the locations of the clusters, or groups of parameters, could essentially become fixed, moving only rarely. Two strategies that have been proposed to create the second generation of Gibbs samplers are integration and appending a second stage to the Gibbs sampler wherein the cluster locations are moved. We show that these same strategies are easily implemented for the sequential importance sampler, and that the first strategy dramatically improves results. As in the case of Gibbs sampling, these strategies are applicable to a much wider class of models. They are shown to provide more uniform importance sampling weights and lead to additional Rao-Blackwellization of estimators.  相似文献   

18.
Bootstrap methods are proposed for estimating sampling distributions and associated statistics for regression parameters in multivariate survival data. We use an Independence Working Model (IWM) approach, fitting margins independently, to obtain consistent estimates of the parameters in the marginal models. Resampling procedures, however, are applied to an appropriate joint distribution to estimate covariance matrices, make bias corrections, and construct confidence intervals. The proposed methods allow for fixed or random explanatory variables, the latter case using extensions of existing resampling schemes (Loughin,1995), and they permit the possibility of random censoring. An application is shown for the viral positivity time data previously analyzed by Wei, Lin, and Weissfeld (1989). A simulation study of small-sample properties shows that the proposed bootstrap procedures provide substantial improvements in variance estimation over the robust variance estimator commonly used with the IWM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
This article proposes a variable selection procedure for partially linear models with right-censored data via penalized least squares. We apply the SCAD penalty to select significant variables and estimate unknown parameters simultaneously. The sampling properties for the proposed procedure are investigated. The rate of convergence and the asymptotic normality of the proposed estimators are established. Furthermore, the SCAD-penalized estimators of the nonzero coefficients are shown to have the asymptotic oracle property. In addition, an iterative algorithm is proposed to find the solution of the penalized least squares. Simulation studies are conducted to examine the finite sample performance of the proposed method.  相似文献   

20.
A survival model is presented in which all patients go through a first phase of disease; some then die and the remainder progress to a second phase of disease. The data observed are the path taken and the total sojourn time in the system but not the time, if ever, at which the second phase is entered. The sojourn time in each phase is assumed to be exponentially distributed with possibly different rates for the two phases. Themodel describes serious diseases that progress through one or two phases, and can be extended to multiple phases. The model is extended to account for several length-biased sampling situations. Censoring is considered in all models. Maximum like lihood estimates for the parameters involved exist, are consistent and are a symptotically normal. One of the proposed models is applied to data from the Veterans Administration involving a study of coronary arterial occlusive disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号