首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The inverse hypergeometric distribution is of interest in applications of inverse sampling without replacement from a finite population where a binary observation is made on each sampling unit. Thus, sampling is performed by randomly choosing units sequentially one at a time until a specified number of one of the two types is selected for the sample. Assuming the total number of units in the population is known but the number of each type is not, we consider the problem of estimating this parameter. We use the Delta method to develop approximations for the variance of three parameter estimators. We then propose three large sample confidence intervals for the parameter. Based on these results, we selected a sampling of parameter values for the inverse hypergeometric distribution to empirically investigate performance of these estimators. We evaluate their performance in terms of expected probability of parameter coverage and confidence interval length calculated as means of possible outcomes weighted by the appropriate outcome probabilities for each parameter value considered. The unbiased estimator of the parameter is the preferred estimator relative to the maximum likelihood estimator and an estimator based on a negative binomial approximation, as evidenced by empirical estimates of closeness to the true parameter value. Confidence intervals based on the unbiased estimator tend to be shorter than the two competitors because of its relatively small variance but at a slight cost in terms of coverage probability.  相似文献   

2.
Olman and Shmundak proved 1985 that in estimating a bounded normal mean under squared error loss the Bayes estimator with respect to the uniform distribution on the parameter interval is gamma-minimax when the parameter interval is sufficiently small and the class of priors consists of all symmetric and unimodal distributions. Recently, one of the authors showed that this result remains valid for quite general families of distributions which satisfy some regularity conditions. In the present paper a generalization to the class of unimodal priors with fixed mode is derived. It is proved that the Bayes estimator with respect to a suitable mixture of two uniform distributions is gamma-minimax for sufficiently small parameter intervals. To that end appropriate characterizations of a saddle point in the corresponding statistical games are established. Some results of a numerical study are presented.  相似文献   

3.

This paper is concerned with properties (bias, standard deviation, mean square error and efficiency) of twenty six estimators of the intraclass correlation in the analysis of binary data. Our main interest is to study these properties when data are generated from different distributions. For data generation we considered three over-dispersed binomial distributions, namely, the beta-binomial distribution, the probit normal binomial distribution and a mixture of two binomial distributions. The findings regarding bias, standard deviation and mean squared error of all these estimators, are that (a) in general, the distributions of biases of most of the estimators are negatively skewed. The biases are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution; (b) the standard deviations are smallest when data are generated from the beta-binomial distribution; and (c) the mean squared errors are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution. Of the 26, nine estimators including the maximum likelihood estimator, an estimator based on the optimal quadratic estimating equations of Crowder (1987), and an analysis of variance type estimator is found to have least amount of bias, standard deviation and mean squared error. Also, the distributions of the bias, standard deviation and mean squared error for each of these estimators are, in general, more symmetric than those of the other estimators. Our findings regarding efficiency are that the estimator based on the optimal quadratic estimating equations has consistently high efficiency and least variability in the efficiency results. In the important range in which the intraclass correlation is small (≤0 5), on the average, this estimator shows best efficiency performance. The analysis of variance type estimator seems to do well for larger values of the intraclass correlation. In general, the estimator based on the optimal quadratic estimating equations seems to show best efficiency performance for data from the beta-binomial distribution and the probit normal binomial distribution, and the analysis of variance type estimator seems to do well for data from the mixture distribution.  相似文献   

4.
Olman and Shmundak (1985) show that in estimating the bounded mean of a normal distribution under squared error loss the Bayes estimator with respect to the uniform prior is gammaminimax when the parameter interval is sufficiently small and the class of priors consists of all probability measures with a symmetric and unimodal density. In the present paper it is proved that this result is valid not only for the normal family but also for more general families of distributions.  相似文献   

5.
We study confidence intervals based on hard-thresholding, soft-thresholding, and adaptive soft-thresholding in a linear regression model where the number of regressors k may depend on and diverge with sample size n. In addition to the case of known error variance, we define and study versions of the estimators when the error variance is unknown. In the known-variance case, we provide an exact analysis of the coverage properties of such intervals in finite samples. We show that these intervals are always larger than the standard interval based on the least-squares estimator. Asymptotically, the intervals based on the thresholding estimators are larger even by an order of magnitude when the estimators are tuned to perform consistent variable selection. For the unknown-variance case, we provide nontrivial lower bounds and a small numerical study for the coverage probabilities in finite samples. We also conduct an asymptotic analysis where the results from the known-variance case can be shown to carry over asymptotically if the number of degrees of freedom n ? k tends to infinity fast enough in relation to the thresholding parameter.  相似文献   

6.
The estimation of the kurtosis parameter of the underlying distribution plays a central role in many statistical applications. The central theme of the article is to improve the estimation of the kurtosis parameter using a priori information. More specifically, we consider the problem of estimating kurtosis parameter of a multivariate population when some prior information regarding the the parameter is available. The rationale is that the sample estimator of the kurtosis parameter has a large estimation error. In this situation we consider shrinkage and pretest estimation methodologies and reappraise their statistical properties. The estimation based on these strategies yield relatively smaller estimation error in comparison with the sample estimator in the candidate subspace. A large sample theory of the suggested estimators are developed and compared. The results demonstrate that suggested estimators outperform the estimator based on the sample data only in the candidate subspace. In an effort to appreciate the relative behavior of the estimators in a finite sample scenario, a Monte-carlo simulation study is planned and performed. The result of simulation study strongly corroborates the asymptotic result. To illustrate the application of the estimators, some example are showcased based on recently published data.  相似文献   

7.
The Maximum Likelihood (ML) and Best Linear Unbiased (BLU) estimators of the location and scale parameters of an extreme value distribution (Lawless [1982]) are compared under conditions of small sample sizes and Type I censorship. The comparisons were made in terms of the mean square error criterion. According to this criterion, the ML estimator of σ in the case of very small sample sizes (n < 10) and heavy censorship (low censoring time) proved to be more efficient than the corresponding BLU estimator. However, the BLU estimator for σ attains parity with the corresponding ML estimator when the censoring time increases even for sample sizes as low as 10. The BLU estimator of σ attains equivalence with the ML estimator when the sample size increases above 10, particularly when the censoring time is also increased. The situation is reversed when it came to estimating the location parameter μ, as the BLU estimator was found to be consistently more efficient than the ML estimator despite the improved performance of the ML estimator when the sample size increases. However, computational ease and convenience favor the ML estimators.  相似文献   

8.
This paper is concerned with the problem of estimating the standard errors of the empirical Bayes estimators in linear regression models. The problem of deriving an exact expression for the standard error of this estimator is generally intractable. We suggest a procedure based on Efron’s bootstrap method as a way of estimating the standard error. It is shown, through simulations, that the bootstrap method provides a more accurate estimate of the standard error of the empirical Bayes estimator than the traditional large sample method.  相似文献   

9.
In the small area estimation, the empirical best linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) in the linear mixed model is recognized to be useful because it gives a stable and reliable estimate for a mean of a small area. In practical situations where EBLUP is applied to real data, it is important to evaluate how much EBLUP is reliable. One method for the purpose is to construct a confidence interval based on EBLUP. In this paper, we obtain an asymptotically corrected empirical Bayes confidence interval in a nested error regression model with unbalanced sample sizes and unknown components of variance. The coverage probability is shown to satisfy the confidence level in the second-order asymptotics. It is numerically revealed that the corrected confidence interval is superior to the conventional confidence interval based on the sample mean in terms of the coverage probability and the expected width of the interval. Finally, it is applied to the posted land price data in Tokyo and the neighboring prefecture.  相似文献   

10.
This paper considers two general ways dependent groups might be compared based on quantiles. The first compares the quantiles of the marginal distributions. The second focuses on the lower and upper quantiles of the usual difference scores. Methods for comparing quantiles have been derived that typically assume that sampling is from a continuous distribution. There are exceptions, but generally, when sampling from a discrete distribution where tied values are likely, extant methods can perform poorly, even with a large sample size. One reason is that extant methods for estimating the standard error can perform poorly. Another is that quantile estimators based on a single-order statistic, or a weighted average of two-order statistics, are not necessarily asymptotically normal. Our main result is that when using the Harrell–Davis estimator, good control over the Type I error probability can be achieved in simulations via a standard percentile bootstrap method, even when there are tied values, provided the sample sizes are not too small. In addition, the two methods considered here can have substantially higher power than alternative procedures. Using real data, we illustrate how quantile comparisons can be used to gain a deeper understanding of how groups differ.  相似文献   

11.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

12.
Abstract. We propose a spline‐based semiparametric maximum likelihood approach to analysing the Cox model with interval‐censored data. With this approach, the baseline cumulative hazard function is approximated by a monotone B‐spline function. We extend the generalized Rosen algorithm to compute the maximum likelihood estimate. We show that the estimator of the regression parameter is asymptotically normal and semiparametrically efficient, although the estimator of the baseline cumulative hazard function converges at a rate slower than root‐n. We also develop an easy‐to‐implement method for consistently estimating the standard error of the estimated regression parameter, which facilitates the proposed inference procedure for the Cox model with interval‐censored data. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated using data from a breast cosmesis study.  相似文献   

13.
In this note we define a composite quantile function estimator in order to improve the accuracy of the classical bootstrap procedure in small sample setting. The composite quantile function estimator employs a parametric model for modelling the tails of the distribution and uses the simple linear interpolation quantile function estimator to estimate quantiles lying between 1/(n+1) and n/(n+1). The method is easily programmed using standard software packages and has general applicability. It is shown that the composite quantile function estimator improves the bootstrap percentile interval coverage for a variety of statistics and is robust to misspecification of the parametric component. Moreover, it is also shown that the composite quantile function based approach surprisingly outperforms the parametric bootstrap for a variety of small sample situations.  相似文献   

14.
By assuming that the underlying distribution belongs to the domain of attraction of an extreme value distribution, one can extrapolate the data to a far tail region so that a rare event can be predicted. However, when the distribution is in the domain of attraction of a Gumbel distribution, the extrapolation is quite limited generally in comparison with a heavy tailed distribution. In view of this drawback, a Weibull tailed distribution has been studied recently. Some methods for choosing the sample fraction in estimating the Weibull tail coefficient and some bias reduction estimators have been proposed in the literature. In this paper, we show that the theoretical optimal sample fraction does not exist and a bias reduction estimator does not always produce a smaller mean squared error than a biased estimator. These are different from using a heavy tailed distribution. Further we propose a refined class of Weibull tailed distributions which are more useful in estimating high quantiles and extreme tail probabilities.  相似文献   

15.
The performance of an estimator can be improved by incorporating some additional information(s) available besides the sample information. If two censored samples are available from the same exponential distribution, it is advantageous to pool the two samples for estimating the mean life. Further, incorporating guess information facilitates accuracy borrowing by shrinkage to a guess point or interval. Both the views have been taken into consideration in the present study. The present paper proposes an estimator for the mean life time of a two parameter exponential distribution, using conditional and/or guess information on it, when the two guarantees are equal but unknown. The bias, mean square error and relative efficiency of the proposed estimator have been studied. Some theoretical results have been derived. It is observed that the proposed testimator dominates the conventional estimator in certain range of life ratio, guess life ratio and shrinkage factor. Further, it is claimed that it always fares better than the preliminary test estimator for mean life proposed by Gupta and Singh (Microelectron. Reliab., 1985, 25, 881–887).  相似文献   

16.
In fuzzy regression discontinuity (FRD) designs, the treatment effect is identified through a discontinuity in the conditional probability of treatment assignment. We show that when identification is weak (i.e., when the discontinuity is of a small magnitude), the usual t-test based on the FRD estimator and its standard error suffers from asymptotic size distortions as in a standard instrumental variables setting. This problem can be especially severe in the FRD setting since only observations close to the discontinuity are useful for estimating the treatment effect. To eliminate those size distortions, we propose a modified t-statistic that uses a null-restricted version of the standard error of the FRD estimator. Simple and asymptotically valid confidence sets for the treatment effect can be also constructed using this null-restricted standard error. An extension to testing for constancy of the regression discontinuity effect across covariates is also discussed. Supplementary materials for this article are available online.  相似文献   

17.
In single-arm clinical trials with survival outcomes, the Kaplan–Meier estimator and its confidence interval are widely used to assess survival probability and median survival time. Since the asymptotic normality of the Kaplan–Meier estimator is a common result, the sample size calculation methods have not been studied in depth. An existing sample size calculation method is founded on the asymptotic normality of the Kaplan–Meier estimator using the log transformation. However, the small sample properties of the log transformed estimator are quite poor in small sample sizes (which are typical situations in single-arm trials), and the existing method uses an inappropriate standard normal approximation to calculate sample sizes. These issues can seriously influence the accuracy of results. In this paper, we propose alternative methods to determine sample sizes based on a valid standard normal approximation with several transformations that may give an accurate normal approximation even with small sample sizes. In numerical evaluations via simulations, some of the proposed methods provided more accurate results, and the empirical power of the proposed method with the arcsine square-root transformation tended to be closer to a prescribed power than the other transformations. These results were supported when methods were applied to data from three clinical trials.  相似文献   

18.
收入基尼系数的统计推断   总被引:2,自引:0,他引:2  
 基尼系数估计量的统计推断是基尼系数研究的一个重点。本文我们使用Davidson(2009)提出的近似大样本渐进分布方法,对收入基尼系数估计量进行统计推断,包括计算估计量的标准差、构造置信区间和进行假设检验。通过模拟试验,我们验证了在小样本情形下,依据该方法所做的统计推断具有较高的可靠性。在此基础上,我们对我国城镇居民的真实收入基尼系数进行了统计推断。  相似文献   

19.
The asymptotic distribution is derived for the minimum distance estimator of a location parameter based on the Kolmogorov goodness of fit statistic. The distribution is expressed in terms of the distribution of a functional of a Brownian bridge. An upper bound is obtained for the length of the confidence interval based on the Kolmogorov statistic. A simulation study with sample sizes 10 and 20 compares the length of the interval based on the Kolmogorov statistic to the length of the interval based on the maximum likelihood estimator. Another simulation shows the effect of model misspecification on the coverage probabilities of the interval based on the Kolmogorov statistic.  相似文献   

20.
Highly skewed and non-negative data can often be modeled by the delta-lognormal distribution in fisheries research. However, the coverage probabilities of extant interval estimation procedures are less satisfactory in small sample sizes and highly skewed data. We propose a heuristic method of estimating confidence intervals for the mean of the delta-lognormal distribution. This heuristic method is an estimation based on asymptotic generalized pivotal quantity to construct generalized confidence interval for the mean of the delta-lognormal distribution. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities, expected interval lengths and reasonable relative biases. Finally, the proposed method is employed in red cod densities data for a demonstration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号