首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper analyzes the impact of some kinds of contaminant on model selection in graphical Gaussian models. We investigate four different kinds of contaminants, in order to consider the effect of gross errors, model deviations, and model misspecification. The aim of the work is to assess against which kinds of contaminant a model selection procedure for graphical Gaussian models has a more robust behavior. The analysis is based on simulated data. The simulation study shows that relatively few contaminated observations in even just one of the variables can have a significant impact on correct model selection, especially when the contaminated variable is a node in a separating set of the graph.  相似文献   

3.
The graphical lasso has now become a useful tool to estimate high-dimensional Gaussian graphical models, but its practical applications suffer from the problem of choosing regularization parameters in a data-dependent way. In this article, we propose a model-averaged method for estimating sparse inverse covariance matrices for Gaussian graphical models. We consider the graphical lasso regularization path as the model space for Bayesian model averaging and use Markov chain Monte Carlo techniques for the regularization path point selection. Numerical performance of our method is investigated using both simulated and real datasets, in comparison with some state-of-art model selection procedures.  相似文献   

4.
We develop a computationally efficient method to determine the interaction structure in a multidimensional binary sample. We use an interaction model based on orthogonal functions, and give a result on independence properties in this model. Using this result we develop an efficient approximation algorithm for estimating the parameters in a given undirected model. To find the best model, we use a heuristic search algorithm in which the structure is determined incrementally. We also give an algorithm for reconstructing the causal directions, if such exist. We demonstrate that together these algorithms are capable of discovering almost all of the true structure for a problem with 121 variables, including many of the directions.  相似文献   

5.
The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.  相似文献   

6.
Summary.  We consider joint probability distributions generated recursively in terms of univariate conditional distributions satisfying conditional independence restrictions. The independences are captured by missing edges in a directed graph. A matrix form of such a graph, called the generating edge matrix, is triangular so the distributions that are generated over such graphs are called triangular systems. We study consequences of triangular systems after grouping or reordering of the variables for analyses as chain graph models, i.e. for alternative recursive factorizations of the given density using joint conditional distributions. For this we introduce families of linear triangular equations which do not require assumptions of distributional form. The strength of the associations that are implied by such linear families for chain graph models is derived. The edge matrices of chain graphs that are implied by any triangular system are obtained by appropriately transforming the generating edge matrix. It is shown how induced independences and dependences can be studied by graphs, by edge matrix calculations and via the properties of densities. Some ways of using the results are illustrated.  相似文献   

7.
Summary.  We use a graphical chain model to investigate the reciprocal relationships between changes in women's labour force participation following entry into parenthood and changes in gender role attitude. Results suggest that attitudes are not fixed and that revision of these attitudes in the light of recent life course events is an important process. The adaptation of attitudes to events appears to be stronger than the selection of individuals on the basis of attitudes. We show that it is not entry into parenthood as such, but the change in economic activity that is related to this event that is associated with attitude change.  相似文献   

8.
Combining statistical models is an useful approach in all the research area where a global picture of the problem needs to be constructed by binding together evidence from different sources [M.S. Massa and S.L. Lauritzen Combining Statistical Models, M. Viana and H. Wynn, eds., American Mathematical Society, Providence, RI, 2010, pp. 239–259]. In this paper, we investigate the effectiveness of combining a fixed number of Gaussian graphical models respecting some consistency assumptions in problems of model building. In particular, we use the meta-Markov combination of Gaussian graphical models as detailed in Massa and Lauritzen and compare model selection results obtained by combining selections over smaller sets of variables with selection results over all variables of interest. In order to do so, we carry out some simulation studies in which different criteria are considered for the selection procedures. We conclude that the combination performs, generally, better than global estimation, is computationally simpler by virtue of having fewer and simpler models to work on, and has an intuitive appeal to a wide variety of contexts.  相似文献   

9.
ABSTRACT

Model selection can be defined as the task of estimating the performance of different models in order to choose the most parsimonious one, among a potentially very large set of candidate statistical models. We propose a graphical representation to be considered as an extension to the class of mixed models of the deviance plot proposed in the literature within the framework of classical and generalized linear models. This graphical representation allows, once a reduced number of models have been selected, to identify important covariates focusing only on the fixed effects component, assuming the random part properly specified. Nevertheless, we suggest also a standalone figure representing the residual random variance ratio: a cross-evaluation of the two graphical representations will allow to derive some conclusions on the random part specification of the model and a more accurate selection of the final model.  相似文献   

10.
We study the problem of selecting a regularization parameter in penalized Gaussian graphical models. When the goal is to obtain a model with good predictive power, cross-validation is the gold standard. We present a new estimator of Kullback–Leibler loss in Gaussian Graphical models which provides a computationally fast alternative to cross-validation. The estimator is obtained by approximating leave-one-out-cross-validation. Our approach is demonstrated on simulated data sets for various types of graphs. The proposed formula exhibits superior performance, especially in the typical small sample size scenario, compared to other available alternatives to cross-validation, such as Akaike's information criterion and Generalized approximate cross-validation. We also show that the estimator can be used to improve the performance of the Bayesian information criterion when the sample size is small.  相似文献   

11.
12.
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming normal and t-distributions). We compare their performance with the more common maximum likelihood-based model selection for simulated and real market data. All five MCMC methods proved reliable in the simulation study, although differing in their computational demands. Results on simulated data also show that for large degrees of freedom (where the t-distribution becomes more similar to a normal one), Bayesian model selection results in better decisions in favor of the true model than maximum likelihood. Results on market data show the instability of the harmonic mean estimator and reliability of the advanced model selection methods.  相似文献   

13.
We present a methodology for Bayesian model choice and averaging in Gaussian directed acyclic graphs (dags). The dimension-changing move involves adding or dropping a (directed) edge from the graph. The methodology employs the results in Geiger and Heckerman and searches directly in the space of all dags. Model determination is carried out by implementing a reversible jump Markov Chain Monte Carlo sampler. To achieve this aim we rely on the concept of adjacency matrices, which provides a relatively inexpensive check for acyclicity. The performance of our procedure is illustrated by means of two simulated datasets, as well as one real dataset.  相似文献   

14.
15.
A partially linear model is a semiparametric regression model that consists of parametric and nonparametric regression components in an additive form. In this article, we propose a partially linear model using a Gaussian process regression approach and consider statistical inference of the proposed model. Based on the proposed model, the estimation procedure is described by posterior distributions of the unknown parameters and model comparisons between parametric representation and semi- and nonparametric representation are explored. Empirical analysis of the proposed model is performed with synthetic data and real data applications.  相似文献   

16.
The weaknesses of established model selection procedures based on hypothesis testing and similar criteria are discussed and an alternative based on synthetic (composite) estimation is proposed. It is developed for the problem of prediction in ordinary regression and its properties are explored by simulations for the simple regression. Extensions to a general setting are described and an example with multiple regression is analysed. Arguments are presented against using a selected model for any inferences.  相似文献   

17.
In varying-coefficient models, an important question is to determine whether some of the varying coefficients are actually invariant coefficients. This article proposes a penalized likelihood method in the framework of the smoothing spline ANOVA models, with a penalty designed toward the goal of automatically distinguishing varying coefficients and those which are not varying. Unlike the stepwise procedure, the method simultaneously quantifies and estimates the coefficients. An efficient algorithm is given and ways of choosing the smoothing parameters are discussed. Simulation results and an analysis on the Boston housing data illustrate the usefulness of the method. The proposed approach is further extended to longitudinal data analysis.  相似文献   

18.
In parametric regression models the sign of a coefficient often plays an important role in its interpretation. One possible approach to model selection in these situations is to consider a loss function that formulates prediction of the sign of a coefficient as a decision problem. Taking a Bayesian approach, we extend this idea of a sign based loss for selection to more complex situations. In generalized additive models we consider prediction of the sign of the derivative of an additive term at a set of predictors. Being able to predict the sign of the derivative at some point (that is, whether a term is increasing or decreasing) is one approach to selection of terms in additive modelling when interpretation is the main goal. For models with interactions, prediction of the sign of a higher order derivative can be used similarly. There are many advantages to our sign-based strategy for selection: one can work in a full or encompassing model without the need to specify priors on a model space and without needing to specify priors on parameters in submodels. Also, avoiding a search over a large model space can simplify computation. We consider shrinkage prior specifications on smoothing parameters that allow for good predictive performance in models with large numbers of terms without the need for selection, and a frequentist calibration of the parameter in our sign-based loss function when it is desired to control a false selection rate for interpretation.  相似文献   

19.
Abstract. We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor (BF), requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper‐parameter, which can be set to its minimal value. We show that our approach produces genuine BFs. The implied prior on the concentration matrix of any complete graph is a data‐dependent Wishart distribution, and this in turn guarantees that Markov equivalent graphs are scored with the same marginal likelihood. We specialize our results to the smaller class of Gaussian decomposable undirected graphical models and show that in this case they coincide with those recently obtained using limiting versions of hyper‐inverse Wishart distributions as priors on the graph‐constrained covariance matrices.  相似文献   

20.
In modern scientific research, multiblock missing data emerges with synthesizing information across multiple studies. However, existing imputation methods for handling block-wise missing data either focus on the single-block missing pattern or heavily rely on the model structure. In this study, we propose a single regression-based imputation algorithm for multiblock missing data. First, we conduct a sparse precision matrix estimation based on the structure of block-wise missing data. Second, we impute the missing blocks with their means conditional on the observed blocks. Theoretical results about variable selection and estimation consistency are established in the context of a generalized linear model. Moreover, simulation studies show that compared with existing methods, the proposed imputation procedure is robust to various missing mechanisms because of the good properties of regression imputation. An application to Alzheimer's Disease Neuroimaging Initiative data also confirms the superiority of our proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号