首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

2.
We are considering the ABLUE’s – asymptotic best linear unbiased estimators – of the location parameter μ and the scale parameter σ of the population jointly based on a set of selected k sample quantiles, when the population distribution has the density of the form
where the standardized function f(u) being of a known functional form.A set of selected sample quantiles with a designated spacing
or in terms of u=(x−μ)/σ
where
λi=∫−∞uif(t) dt, i=1,2,…,k
are given by
x(n1)<x(n2)<<x(nk),
where
Asymptotic distribution of the k sample quantiles when n is very large is given by
h(x(n1),x(n2),…,x(nk);μ,σ)=(2πσ2)k/212−λ1)(λk−λk−1)(1−λk)]−1/2nk/2 exp(−nS/2σ2),
where
fi=f(ui), i=0,1,…,k,k+1,
f0=fk+1=0, λ0=0, λk+1=1.
The relative efficiency of the joint estimation is given by
where
and κ being independent of the spacing . The optimal spacing is the spacing which maximizes the relative efficiency η(μ,σ).We will prove the following rather remarkable theorem. Theorem. The optimal spacing for the joint estimation is symmetric, i.e.
λiki+1=1,
or
ui+uki+1=0, i=1,2,…,k,
if the standardized density f(u) of the population is differentiable infinitely many times and symmetric
f(−u)=f(u), f′(−u)=−f′(u).
  相似文献   

3.
It is well known that a Bayesian credible interval for a parameter of interest is derived from a prior distribution that appropriately describes the prior information. However, it is less well known that there exists a frequentist approach developed by Pratt (1961 Pratt , J. W. ( 1961 ). Length of confidence intervals . J. Amer. Statist. Assoc. 56 : 549657 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) that also utilizes prior information in the construction of frequentist confidence intervals. This frequentist approach produces confidence intervals that have minimum weighted average expected length, averaged according to some weight function that appropriately describes the prior information. We begin with a simple model as a starting point in comparing these two distinct procedures in interval estimation. Consider X 1,…, X n that are independent and identically N(μ, σ2) distributed random variables, where σ2 is known, and the parameter of interest is μ. Suppose also that previous experience with similar data sets and/or specific background and expert opinion suggest that μ = 0. Our aim is to: (a) develop two types of Bayesian 1 ? α credible intervals for μ, derived from an appropriate prior cumulative distribution function F(μ) more importantly; (b) compare these Bayesian 1 ? α credible intervals for μ to the frequentist 1 ? α confidence interval for μ derived from Pratt's frequentist approach, in which the weight function corresponds to the prior cumulative distribution function F(μ). We show that the endpoints of the Bayesian 1 ? α credible intervals for μ are very different to the endpoints of the frequentist 1 ? α confidence interval for μ, when the prior information strongly suggests that μ = 0 and the data supports the uncertain prior information about μ. In addition, we assess the performance of these intervals by analyzing their coverage probability properties and expected lengths.  相似文献   

4.
Consider data (x 1,y 1),...,(x n,y n), where each x i may be vector valued, and the distribution of y i given x i is a mixture of linear regressions. This provides a generalization of mixture models which do not include covariates in the mixture formulation. This mixture of linear regressions formulation has appeared in the computer science literature under the name Hierarchical Mixtures of Experts model.This model has been considered from both frequentist and Bayesian viewpoints. We focus on the Bayesian formulation. Previously, estimation of the mixture of linear regression model has been done through straightforward Gibbs sampling with latent variables. This paper contributes to this field in three major areas. First, we provide a theoretical underpinning to the Bayesian implementation by demonstrating consistency of the posterior distribution. This demonstration is done by extending results in Barron, Schervish and Wasserman (Annals of Statistics 27: 536–561, 1999) on bracketing entropy to the regression setting. Second, we demonstrate through examples that straightforward Gibbs sampling may fail to effectively explore the posterior distribution and provide alternative algorithms that are more accurate. Third, we demonstrate the usefulness of the mixture of linear regressions framework in Bayesian robust regression. The methods described in the paper are applied to two examples.  相似文献   

5.
For estimating an unknown parameter θ, we introduce and motivate the use of balanced loss functions of the form Lr, w, d0(q, d)=wr(d0, d)+ (1-w) r(q, d){L_{\rho, \omega, \delta_0}(\theta, \delta)=\omega \rho(\delta_0, \delta)+ (1-\omega) \rho(\theta, \delta)}, as well as the weighted version q(q) Lr, w, d0(q, d){q(\theta) L_{\rho, \omega, \delta_0}(\theta, \delta)}, where ρ(θ, δ) is an arbitrary loss function, δ 0 is a chosen a priori “target” estimator of q, w ? [0,1){\theta, \omega \in[0,1)}, and q(·) is a positive weight function. we develop Bayesian estimators under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω > 0 by relating such estimators to Bayesian solutions under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω = 0. Illustrations are given for various choices of ρ, such as absolute value, entropy, linex, and squared error type losses. Finally, under various robust Bayesian analysis criteria including posterior regret gamma-minimaxity, conditional gamma-minimaxity, and most stable, we establish explicit connections between optimal actions derived under balanced and unbalanced losses.  相似文献   

6.
7.
The Jeffreys-rule prior and the marginal independence Jeffreys prior are recently proposed in Fonseca et al. [Objective Bayesian analysis for the Student-t regression model, Biometrika 95 (2008), pp. 325–333] as objective priors for the Student-t regression model. The authors showed that the priors provide proper posterior distributions and perform favourably in parameter estimation. Motivated by a practical financial risk management application, we compare the performance of the two Jeffreys priors with other priors proposed in the literature in a problem of estimating high quantiles for the Student-t model with unknown degrees of freedom. Through an asymptotic analysis and a simulation study, we show that both Jeffreys priors perform better in using a specific quantile of the Bayesian predictive distribution to approximate the true quantile.  相似文献   

8.
Consider a given sequence {Tn} of estimators for a real-valued parameter θ. This paper studies asymptotic properties of restricted Bayes tests of the following form: reject H0:θ ≤ θ0 in favour of the alternative θ > θ0 if TnCn, where the critical point Cn is determined to minimize among all tests of this form the expected probability of error with respect to the prior distribution. Such tests may or may not be fully Bayes tests, and so are called Tn-Bayes. Under fairly broad conditions it is shown that and the Tn-Bayes risk where an is the order of the standard error of Tn, - is the prior density, and μ is the median of F, the limit distribution of (Tn – θ)/anb(θ). Several examples are given.  相似文献   

9.
The positive false discovery rate was introduced by Storey (2003 Storey , J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. Ann. Statist. 31:20132035.[Crossref], [Web of Science ®] [Google Scholar]) as an alternative to the family wise error rate for the case in which we are simultaneously testing a large amount of hypotheses. The positive false discovery rate has a very nice Bayesian interpretation (as it was shown by Storey, 2003 Storey , J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. Ann. Statist. 31:20132035.[Crossref], [Web of Science ®] [Google Scholar]) and its robustness is analyzed. The emphasis is on the ε-contamination class (one of the most used classes of priors for Bayesian robustness) and it is shown that robustness is not obtained when the basic prior concentrates the probability on the null hypothesis.  相似文献   

10.
In this paper, we study the empirical Bayes two-action problem under linear loss function. Upper bounds on the regret of empirical Bayes testing rules are investigated. Previous results on this problem construct empirical Bayes tests using kernel type estimators of nonparametric functionals. Further, they have assumed specific forms, such as the continuous one-parameter exponential family for {Fθ:θΩ}, for the family of distributions of the observations. In this paper, we present a new general approach of establishing upper bounds (in terms of rate of convergence) of empirical Bayes tests for this problem. Our results are given for any family of continuous distributions and apply to empirical Bayes tests based on any type of nonparametric method of functional estimation. We show that our bounds are very sharp in the sense that they reduce to existing optimal or nearly optimal rates of convergence when applied to specific families of distributions.  相似文献   

11.
The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components is not specified in advance and can grow as new data arrive. However, analyses based on the Dirichlet process prior are sensitive to the choice of the parameters, including an infinite-dimensional distributional parameter G 0. Most previous applications have either fixed G 0 as a member of a parametric family or treated G 0 in a Bayesian fashion, using parametric prior specifications. In contrast, we have developed an adaptive nonparametric method for constructing smooth estimates of G 0. We combine this method with a technique for estimating α, the other Dirichlet process parameter, that is inspired by an existing characterization of its maximum-likelihood estimator. Together, these estimation procedures yield a flexible empirical Bayes treatment of Dirichlet process mixtures. Such a treatment is useful in situations where smooth point estimates of G 0 are of intrinsic interest, or where the structure of G 0 cannot be conveniently modeled with the usual parametric prior families. Analysis of simulated and real-world datasets illustrates the robustness of this approach.  相似文献   

12.
Combined Bayesian estimates for equicorrelation covariance matrices are considered. The case of a common equicorrelation p and possibly different standard deviations σlk among k experimental groups is examined first, and the Bayesian estimation of (σ, σ1k) is discussed. Secondly, under the assumption of a common standard deviation and possibly different equicorrelations, the Bayesian estimation of (ρ1k,σ) is considered.  相似文献   

13.
We consider approximate Bayesian inference about the quantity R = P[Y2> Y1] when both the random variables Y1, Y2 have expectations that depend on certain explanatory variables. Our interest centers on certain characteristics of the posterior of R under Jeffreys's prior, such as its mean, variance and percentiles. Since the posterior of R is not available in closed form, several approximation procedures are introduced, and their relative performance is assessed using two real datasets.  相似文献   

14.
Rates of convergence of Bayesian nonparametric procedures are expressed as the maximum between two rates: one is determined via suitable measures of concentration of the prior around the “true” density f0, and the other is related to the way the mass is spread outside a neighborhood of f0. Here we provide a lower bound for the former in terms of the usual notion of prior concentration and in terms of an alternative definition of prior concentration. Moreover, we determine the latter for two important classes of priors: the infinite–dimensional exponential family, and the Pólya trees.  相似文献   

15.
We consider here a generalization of the skew-normal distribution, GSN(λ1,λ2,ρ), defined through a standard bivariate normal distribution with correlation ρ, which is a special case of the unified multivariate skew-normal distribution studied recently by Arellano-Valle and Azzalini [2006. On the unification of families of skew-normal distributions. Scand. J. Statist. 33, 561–574]. We then present some simple and useful properties of this distribution and also derive its moment generating function in an explicit form. Next, we show that distributions of order statistics from the trivariate normal distribution are mixtures of these generalized skew-normal distributions; thence, using the established properties of the generalized skew-normal distribution, we derive the moment generating functions of order statistics, and also present expressions for means and variances of these order statistics.Next, we introduce a generalized skew-tν distribution, which is a special case of the unified multivariate skew-elliptical distribution presented by Arellano-Valle and Azzalini [2006. On the unification of families of skew-normal distributions. Scand. J. Statist. 33, 561–574] and is in fact a three-parameter generalization of Azzalini and Capitanio's [2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J. Roy. Statist. Soc. Ser. B 65, 367–389] univariate skew-tν form. We then use the relationship between the generalized skew-normal and skew-tν distributions to discuss some properties of generalized skew-tν as well as distributions of order statistics from bivariate and trivariate tν distributions. We show that these distributions of order statistics are indeed mixtures of generalized skew-tν distributions, and then use this property to derive explicit expressions for means and variances of these order statistics.  相似文献   

16.
This paper investigates robustness of multivariate forecasting in the Bayesian framework. The minimax approach is used to construct robust statistical procedures under deviations from hypothetical assumptions. The deviations are defined as functional distortions using the χ2-pseudo-metric. Two cases of deviations are considered: distortions of parameter distribution and distortions of joint distribution of observations and parameters. Explicit forms for the guaranteed upper risk functional are obtained and integral equations for robust prediction statistics are given for both cases.  相似文献   

17.
ABSTRACT

This paper deals with Bayes, robust Bayes, and minimax predictions in a subfamily of scale parameters under an asymmetric precautionary loss function. In Bayesian statistical inference, the goal is to obtain optimal rules under a specified loss function and an explicit prior distribution over the parameter space. However, in practice, we are not able to specify the prior totally or when a problem must be solved by two statisticians, they may agree on the choice of the prior but not the values of the hyperparameters. A common approach to the prior uncertainty in Bayesian analysis is to choose a class of prior distributions and compute some functional quantity. This is known as Robust Bayesian analysis which provides a way to consider the prior knowledge in terms of a class of priors Γ for global prevention against bad choices of hyperparameters. Under a scale invariant precautionary loss function, we deal with robust Bayes predictions of Y based on X. We carried out a simulation study and a real data analysis to illustrate the practical utility of the prediction procedure.  相似文献   

18.
We consider generalizations of projective Klingenberg and projective Hjelmslev planes, mainly (b, c)-K-structures. These are triples (φ, Π, Π′) where Π and Π′ are incidence structures and φ : Π → Π′ is an epimorphism which satisfies certain lifting axioms for double flags. The congruence relations of such triples are investigated, leading to nice factorizations of φ. Two integer invariants are associated with each congruence relation, generalizing a theorem of Kleinfeld on projective Hjelmslev planes. These invariants are completely characterized for a special class of triples: the balanced, minimally uniform neighbor cohesive (1,1)-K-structures. We show that a balanced neighbor cohesive (1,1)-K-structure Π “over” a PBIBD Π′ is again a PBIBD and compute its invariants. Several methods are given for constructing symmetric “divisible” PBIBD's on arbitrarily many classes.  相似文献   

19.
Summary Let {X n } be a sequence of random variables conditionally independent and identically distributed given the random variable Θ. The aim of this paper is to show that in many interesting situations the conditional distribution of Θ, given (X 1,…,X n ), can be approximated by means of the bootstrap procedure proposed by Efron and applied to a statisticT n (X 1,…,X n ) sufficient for predictive purposes. It will also be shown that, from the predictive point of view, this is consistent with the results obtained following a common Bayesian approach.  相似文献   

20.
Let X(1,n,m1,k),X(2,n,m2,k),…,X(n,n,m,k) be n generalized order statistics from a continuous distribution F which is strictly increasing over (a,b),−a<b, the support of F. Let g be an absolutely continuous and monotonically increasing function in (a,b) with finite g(a+),g(b) and E(g(X)). Then for some positive integer s,1<sn, we give characterization of distributions by means of
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号