首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
As conventional cross-validation bandwidth selection methods do not work properly in the situation where the data are serially dependent time series, alternative bandwidth selection methods are necessary. In recent years, Bayesian-based methods for global bandwidth selection have been studied. Our experience shows that a global bandwidth is however less suitable than a localized bandwidth in kernel density estimation based on serially dependent time series data. Nonetheless, a di?cult issue is how we can consistently estimate a localized bandwidth. This paper presents a nonparametric localized bandwidth estimator, for which we establish a completely new asymptotic theory. Applications of this new bandwidth estimator to the kernel density estimation of Eurodollar deposit rate and the S&P 500 daily return demonstrate the effectiveness and competitiveness of the proposed localized bandwidth.  相似文献   

2.
The mean squared error (MSE)-minimizing local variable bandwidth for the univariate local linear estimator (the LL) is well-known. This bandwidth does not stabilize variance over the domain. Moreover, in regions where a regression function has zero curvature, the LL estimator is discontinuous. In this paper, we propose a variance-stabilizing (VS) local variable diagonal bandwidth matrix for the multivariate LL estimator. Theoretically, the VS bandwidth can outperform the multivariate extension of the MSE-minimizing local variable scalar bandwidth in terms of asymptotic mean integrated squared error and can avoid discontinuity created by the MSE-minimizing bandwidth. We present an algorithm for estimating the VS bandwidth and simulation studies.  相似文献   

3.
Abstract.  The performance of multivariate kernel density estimates depends crucially on the choice of bandwidth matrix, but progress towards developing good bandwidth matrix selectors has been relatively slow. In particular, previous studies of cross-validation (CV) methods have been restricted to biased and unbiased CV selection of diagonal bandwidth matrices. However, for certain types of target density the use of full (i.e. unconstrained) bandwidth matrices offers the potential for significantly improved density estimation. In this paper, we generalize earlier work from diagonal to full bandwidth matrices, and develop a smooth cross-validation (SCV) methodology for multivariate data. We consider optimization of the SCV technique with respect to a pilot bandwidth matrix. All the CV methods are studied using asymptotic analysis, simulation experiments and real data analysis. The results suggest that SCV for full bandwidth matrices is the most reliable of the CV methods. We also observe that experience from the univariate setting can sometimes be a misleading guide for understanding bandwidth selection in the multivariate case.  相似文献   

4.
The existence and properties of optimal bandwidths for multivariate local linear regression are established, using either a scalar bandwidth for all regressors or a diagonal bandwidth vector that has a different bandwidth for each regressor. Both involve functionals of the derivatives of the unknown multivariate regression function. Estimating these functionals is difficult primarily because they contain multivariate derivatives. In this paper, an estimator of the multivariate second derivative is obtained via local cubic regression with most cross-terms left out. This estimator has the optimal rate of convergence but is simpler and uses much less computing time than the full local estimator. Using this as a pilot estimator, we obtain plug-in formulae for the optimal bandwidth, both scalar and diagonal, for multivariate local linear regression. As a simpler alternative, we also provide rule-of-thumb bandwidth selectors. All these bandwidths have satisfactory performance in our simulation study.  相似文献   

5.
In this paper, we propose a robust bandwidth selection method for local M-estimates used in nonparametric regression. We study the asymptotic behavior of the resulting estimates. We use the results of a Monte Carlo study to compare the performance of various competitors for moderate samples sizes. It appears that the robust plug-in bandwidth selector we propose compares favorably to its competitors, despite the need to select a pilot bandwidth. The Monte Carlo study shows that the robust plug-in bandwidth selector is very stable and relatively insensitive to the choice of the pilot.  相似文献   

6.
Abstract.  The problem of choosing the bandwidth h for kernel density estimation is considered. All the plug-in-type bandwidth selection methods require the use of a pilot bandwidth g . The usual way to make an h -dependent choice of g is by obtaining their asymptotic expressions separately and solving the two equations. In contrast, we obtain the asymptotically optimal value of g for every fixed h , thus making our selection 'less asymptotic'. Exact error expressions show that some usually assumed hypotheses have to be discarded in the asymptotic study in this case. Two versions of a new bandwidth selector based on this idea are proposed, and their properties are analysed through theoretical results and a simulation study.  相似文献   

7.
In this paper we study the ideal variable bandwidth kernel density estimator introduced by McKay (1993a, b) and Jones et al. (1994) and the plug-in practical version of the variable bandwidth kernel estimator with two sequences of bandwidths as in Giné and Sang (2013). Based on the bias and variance analysis of the ideal and plug-in variable bandwidth kernel density estimators, we study the central limit theorems for each of them. The simulation study confirms the central limit theorem and demonstrates the advantage of the plug-in variable bandwidth kernel method over the classical kernel method.  相似文献   

8.
The geographical relative risk function is a useful tool for investigating the spatial distribution of disease based on case and control data. The most common way of estimating this function is using the ratio of bivariate kernel density estimates constructed from the locations of cases and controls, respectively. An alternative is to use a local-linear (LL) estimator of the log-relative risk function. In both cases, the choice of bandwidth is critical. In this article, we examine the relative performance of the two estimation techniques using a variety of data-driven bandwidth selection methods, including likelihood cross-validation (CV), least-squares CV, rule-of-thumb reference methods, and a new approximate plug-in (PI) bandwidth for the LL estimator. Our analysis includes the comparison of asymptotic results; a simulation study; and application of the estimators on two real data sets. Our findings suggest that the density ratio method implemented with the least-squares CV bandwidth selector is generally best, with the LL estimator with PI bandwidth being competitive in applications with strong large-scale trends but much worse in situations with elliptical clusters.  相似文献   

9.
In this paper, we provide a large bandwidth analysis for a class of local likelihood methods. This work complements the small bandwidth analysis of Park et al. (Ann. Statist. 30 (2002) 1480). Our treatment is more general than the large bandwidth analysis of Eguchi and Copas (J. Roy. Statist. Soc. B 60 (1998) 709). We provide a higher-order asymptotic analysis for the risk of the local likelihood density estimator, from which a direct comparison between various versions of local likelihood can be made. The present work, being combined with the small bandwidth results of Park et al. (2002), gives an optimal size of the bandwidth which depends on the degree of departure of the underlying density from the proposed parametric model.  相似文献   

10.
Matching estimators and optimal bandwidth choice   总被引:1,自引:0,他引:1  
Optimal bandwidth choice for matching estimators and their finite sample properties are examined. An approximation to their MSE is derived, as a basis for a plug-in bandwidth selector. In small samples, this approximation is not very accurate, though. Alternatively, conventional cross-validation bandwidth selection is considered and performs rather well in simulation studies: Compared to standard pair-matching, kernel and ridge matching achieve reductions in MSE of about 25 to 40%. Local linear matching and weighting perform poorly. Furthermore, the scope for developing better bandwidth selectors seems to be limited for ridge matching, but non-negligible for kernel and local linear matching.  相似文献   

11.
Consider a regression model where the regression function is the sum of a linear and a nonparametric component. Assuming that the errors of the model follow a stationary strong mixing process with mean zero, the problem of bandwidth selection for a kernel estimator of the nonparametric component is addressed here. We obtain an asymptotic expression for an optimal band-width and we propose to use a plug-in methodology in order to estimate this bandwidth through preliminary estimates of the unknown quantities. Asymptotic optimality for the plug-in bandwidth is established.  相似文献   

12.
A crucial problem in kernel density estimates of a probability density function is the selection of the bandwidth. The aim of this study is to propose a procedure for selecting both fixed and variable bandwidths. The present study also addresses the question of how different variable bandwidth kernel estimators perform in comparison with each other and to the fixed type of bandwidth estimators. The appropriate algorithms for implementation of the proposed method are given along with a numerical simulation.The numerical results serve as a guide to determine which bandwidth selection method is most appropriate for a given type of estimator over a vide class of probability density functions, Also, we obtain a numerical comparison of the different types of kernel estimators under various types of bandwidths.  相似文献   

13.
Bandwidth plays an important role in determining the performance of nonparametric estimators, such as the local constant estimator. In this article, we propose a Bayesian approach to bandwidth estimation for local constant estimators of time-varying coefficients in time series models. We establish a large sample theory for the proposed bandwidth estimator and Bayesian estimators of the unknown parameters involved in the error density. A Monte Carlo simulation study shows that (i) the proposed Bayesian estimators for bandwidth and parameters in the error density have satisfactory finite sample performance; and (ii) our proposed Bayesian approach achieves better performance in estimating the bandwidths than the normal reference rule and cross-validation. Moreover, we apply our proposed Bayesian bandwidth estimation method for the time-varying coefficient models that explain Okun’s law and the relationship between consumption growth and income growth in the U.S. For each model, we also provide calibrated parametric forms of the time-varying coefficients. Supplementary materials for this article are available online.  相似文献   

14.
Kernel-based density estimation algorithms are inefficient in presence of discontinuities at support endpoints. This is substantially due to the fact that classic kernel density estimators lead to positive estimates beyond the endopoints. If a nonparametric estimate of a density functional is required in determining the bandwidth, then the problem also affects the bandwidth selection procedure. In this paper algorithms for bandwidth selection and kernel density estimation are proposed for non-negative random variables. Furthermore, the methods we propose are compared with some of the principal solutions in the literature through a simulation study.  相似文献   

15.
Length-biased data are a particular case of weighted data, which arise in many situations: biomedicine, quality control or epidemiology among others. In this paper we study the theoretical properties of kernel density estimation in the context of length-biased data, proposing two consistent bootstrap methods that we use for bandwidth selection. Apart from the bootstrap bandwidth selectors we suggest a rule-of-thumb. These bandwidth selection proposals are compared with a least-squares cross-validation method. A simulation study is accomplished to understand the behaviour of the procedures in finite samples.  相似文献   

16.
We consider the problem of local linear estimation of the regression function when the regressor is functional. The main result of this paper is to prove the strong convergence (with rates), uniformly in bandwidth parameters (UIB), of the considered estimator. The main interest of this result is the possibility to derive the asymptotic properties of our estimate even if the bandwidth parameter is a random variable.  相似文献   

17.
The performances of data-driven bandwidth selection procedures in local polynomial regression are investigated by using asymptotic methods and simulation. The bandwidth selection procedures considered are based on minimizing 'prelimit' approximations to the (conditional) mean-squared error (MSE) when the MSE is considered as a function of the bandwidth h . We first consider approximations to the MSE that are based on Taylor expansions around h=0 of the bias part of the MSE. These approximations lead to estimators of the MSE that are accurate only for small bandwidths h . We also consider a bias estimator which instead of using small h approximations to bias naïvely estimates bias as the difference of two local polynomial estimators of different order and we show that this estimator performs well only for moderate to large h . We next define a hybrid bias estimator which equals the Taylor-expansion-based estimator for small h and the difference estimator for moderate to large h . We find that the MSE estimator based on this hybrid bias estimator leads to a bandwidth selection procedure with good asymptotic and, for our Monte Carlo examples, finite sample properties.  相似文献   

18.
A bandwidth selection method that combines the concept of least-squares cross-validation and the plug-in approach is being introduced in connection with kernel density estimation. A simulation study reveals that this hybrid methodology outperforms some commonly used bandwidth selection rules. It is shown that the proposed approach can also be readily employed in the context of variable kernel density estimation. We conclude with two illustrative examples.  相似文献   

19.
In non-parametric function estimation selection of a smoothing parameter is one of the most important issues. The performance of smoothing techniques depends highly on the choice of this parameter. Preferably the bandwidth should be determined via a data-driven procedure. In this paper we consider kernel estimators in a white noise model, and investigate whether locally adaptive plug-in bandwidths can achieve optimal global rates of convergence. We consider various classes of functions: Sobolev classes, bounded variation function classes, classes of convex functions and classes of monotone functions. We study the situations of pilot estimation with oversmoothing and without oversmoothing. Our main finding is that simple local plug-in bandwidth selectors can adapt to spatial inhomogeneity of the regression function as long as there are no local oscillations of high frequency. We establish the pointwise asymptotic distribution of the regression estimator with local plug-in bandwidth.  相似文献   

20.
This paper investigates nonparametric estimation of density on [0, 1]. The kernel estimator of density on [0, 1] has been found to be sensitive to both bandwidth and kernel. This paper proposes a unified Bayesian framework for choosing both the bandwidth and kernel function. In a simulation study, the Bayesian bandwidth estimator performed better than others, and kernel estimators were sensitive to the choice of the kernel and the shapes of the population densities on [0, 1]. The simulation and empirical results demonstrate that the methods proposed in this paper can improve the way the probability densities on [0, 1] are presently estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号