首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The general Gauss–Markov model, Y = e, E(e) = 0, Cov(e) = σ 2 V, has been intensively studied and widely used. Most studies consider covariance matrices V that are nonsingular but we focus on the most difficult case wherein C(X), the column space of X, is not contained in C(V). This forces V to be singular. Under this condition there exist nontrivial linear functions of Q that are known with probability 1 (perfectly) where ${C(Q)=C(V)^\perp}$ . To treat ${C(X) \not \subset C(V)}$ , much of the existing literature obtains estimates and tests by replacing V with a pseudo-covariance matrix T = V + XUX′ for some nonnegative definite U such that ${C(X) \subset C(T)}$ , see Christensen (Plane answers to complex questions: the theory of linear models, 2002, Chap. 10). We find it more intuitive to first eliminate what is known about and then to adjust X while keeping V unchanged. We show that we can decompose β into the sum of two orthogonal parts, β = β 0 + β 1, where β 0 is known. We also show that the unknown component of X β is ${X\beta_1 \equiv \tilde{X} \gamma}$ , where ${C(\tilde{X})=C(X)\cap C(V)}$ . We replace the original model with ${Y-X\beta_0=\tilde{X}\gamma+e}$ , E(e) = 0, ${Cov(e)=\sigma^2V}$ and perform estimation and tests under this new model for which the simplifying assumption ${C(\tilde{X}) \subset C(V)}$ holds. This allows us to focus on the part of that parameters that are not known perfectly. We show that this method provides the usual estimates and tests.  相似文献   

3.
R. Göb 《Statistical Papers》1992,33(1):273-277
In elementary probability theory, as a result of a limiting process the probabilities of aBi(n, p) binomial distribution are approximated by the probabilities of aPo(np) Poisson distribution. Accordingly, in statistical quality control the binomial operating characteristic function \(\mathcal{L}_{n,c} (p)\) is approximated by the Poisson operating characteristic function \(\mathcal{F}_{n,c} (p)\) . The inequality \(\mathcal{L}_{n + 1,c + 1} (p) > \mathcal{L}_{n,c} (p)\) forp∈(0;1) is evident from the interpretation of \(\mathcal{L}_{n + 1,c + 1} (p)\) , \(\mathcal{L}_{n,c} (p)\) as probabilities of accepting a lot. It is shown that the Poisson approximation \(\mathcal{F}_{n,c} (p)\) preserves this essential feature of the binomial operating characteristic function, i.e. that an analogous inequality holds for the Poisson operating characteristic function, too.  相似文献   

4.
For the counting process N={N(t), t≥0} and the probability that a device survives the first k shocks \(\bar P_k \) , the probability that the device survives beyond t that is \(\bar H(t) = \sum\limits_{k = 0}^\omega {P(N(t) = k)} \bar P_k \) is considered. The survival \(\bar H(t)\) is proved to have the new better (worse) than used renewal failure rate and the new better (worse) than average failure rate properties under, some conditions on N and \((\bar P_k )_{k = \rho }^\omega \) . In particular we study the survival probability when N is a nonhomogeneous Poisson process or birth process. Acumulative damage model and Laplace transform characterization for properties are investigated. Further the generating functions for these renewal failure rates properties are given.  相似文献   

5.
We consider equalities between the ordinary least squares estimator ( $\mathrm {OLSE} $ ), the best linear unbiased estimator ( $\mathrm {BLUE} $ ) and the best linear unbiased predictor ( $\mathrm {BLUP} $ ) in the general linear model $\{ \mathbf y , \mathbf X \varvec{\beta }, \mathbf V \}$ extended with the new unobservable future value $ \mathbf y _{*}$ of the response whose expectation is $ \mathbf X _{*}\varvec{\beta }$ . Our aim is to provide some new insight and new proofs for the equalities under consideration. We also collect together various expressions, without rank assumptions, for the $\mathrm {BLUP} $ and provide new results giving upper bounds for the Euclidean norm of the difference between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {BLUE} ( \mathbf X _{*}\varvec{\beta })$ and between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {OLSE} ( \mathbf X _{*}\varvec{\beta })$ . A remark is made on the application to small area estimation.  相似文献   

6.
Krämer (Sankhy $\bar{\mathrm{a }}$ 42:130–131, 1980) posed the following problem: “Which are the $\mathbf{y}$ , given $\mathbf{X}$ and $\mathbf{V}$ , such that OLS and Gauss–Markov are equal?”. In other words, the problem aimed at identifying those vectors $\mathbf{y}$ for which the ordinary least squares (OLS) and Gauss–Markov estimates of the parameter vector $\varvec{\beta }$ coincide under the general Gauss–Markov model $\mathbf{y} = \mathbf{X} \varvec{\beta } + \mathbf{u}$ . The problem was later called a “twist” to Kruskal’s Theorem, which provides conditions necessary and sufficient for the OLS and Gauss–Markov estimates of $\varvec{\beta }$ to be equal. The present paper focuses on a similar problem to the one posed by Krämer in the aforementioned paper. However, instead of the estimation of $\varvec{\beta }$ , we consider the estimation of the systematic part $\mathbf{X} \varvec{\beta }$ , which is a natural consequence of relaxing the assumption that $\mathbf{X}$ and $\mathbf{V}$ are of full (column) rank made by Krämer. Further results, dealing with the Euclidean distance between the best linear unbiased estimator (BLUE) and the ordinary least squares estimator (OLSE) of $\mathbf{X} \varvec{\beta }$ , as well as with an equality between BLUE and OLSE are also provided. The calculations are mostly based on a joint partitioned representation of a pair of orthogonal projectors.  相似文献   

7.
In this paper, by relaxing the mixing coefficients to α(n) = O(n ), β > 3, we investigate the Bahadur representation of sample quantiles under α-mixing sequence and obtain the rate as ${O(n^{-\frac{1}{2}}(\log\log n\cdot\log n)^{\frac{1}{2}})}$ . Meanwhile, for any δ > 0, by strengthening the mixing coefficients to α(n) = O(n ), ${\beta > \max\{3+\frac{5}{1+\delta},1+\frac{2}{\delta}\}}$ , we have the rate as ${O(n^{-\frac{3}{4}+\frac{\delta}{4(2+\delta)}}(\log\log n\cdot \log n)^{\frac{1}{2}})}$ . Specifically, if ${\delta=\frac{\sqrt{41}-5}{4}}$ and ${\beta > \frac{\sqrt{41}+7}{2}}$ , then the rate is presented as ${O(n^{-\frac{\sqrt{41}+5}{16}}(\log\log n\cdot \log n)^{\frac{1}{2}})}$ .  相似文献   

8.
Let (X1, X2, Y1, Y2) be a four dimensional random variable having the joint probability density function f(x1, x2, y1, y2). In this paper we consider the problem of estimating the regression function \({{E[(_{Y_2 }^{Y_1 } )} \mathord{\left/ {\vphantom {{E[(_{Y_2 }^{Y_1 } )} {_{X_2 = X_2 }^{X_1 = X_1 } }}} \right. \kern-0em} {_{X_2 = X_2 }^{X_1 = X_1 } }}]\) on the basis of a random sample of size n. We have proved that under certain regularity conditions the kernel estimate of this regression function is uniformly strongly consistent. We have also shown that under certain conditions the estimate is asymptotically normally distributed.  相似文献   

9.
Whenever a random sample is drawn from a stratified population, the post-stratification estimator $\tilde X$ usually is preferred to the sample mean $\tilde X$ , when the population mean is to be estimated. This is due to the fact that the variance of $\tilde X$ is asymptotically smaller than that of $\tilde X$ , while both estimators are asymptotically unbiased. However, this only holds looking at post-stratification unconditionally, when strata sample sizes are random. Conditioned on the realized sample sizes, the MSE of $\tilde X$ can be higher than that of $\tilde X$ which means that $\tilde X$ should be preferred to $\tilde X$ , even if it is biased. The conditional MSE difference of $\tilde X$ and $\tilde X$ is estimated, and using this estimation and its variance a heuristic test based on the Vysochanskiî-Petunin inequality is derived.  相似文献   

10.
In 1973 Balestra examined the linear model y=XB+u, where u is a normally distributed disturbance vector, with variance matrix Ω. Ω has spectral decomposition \(\sum\limits_{i = 1}^r {\lambda _i M_i } \) , and the matrices Mi are known. Estimation of ω is thus equivalent with estimation of the λi. Balestra presented the best quadratic unbiased estimator of λi. In the present paper a derivation will be given which is based on a procedure developed by this writer (1980).  相似文献   

11.
In this paper we consider ${E(x\otimes xx^{\prime})}$ and ${E(xx^{\prime }\otimes xx^{\prime})}$ for a random vector x where x i has existing moments up to the fourth order and where the higher moments may depend on i. This extends previous results which assumed a common higher moment and E(xx??)?=?I.  相似文献   

12.
Let \(\mathbb{N } = \{1, 2, 3, \ldots \}\) . Let \(\{X, X_{n}; n \in \mathbb N \}\) be a sequence of i.i.d. random variables, and let \(S_{n} = \sum _{i=1}^{n}X_{i}, n \in \mathbb N \) . Then \( S_{n}/\sqrt{n} \Rightarrow N(0, \sigma ^{2})\) for some \(\sigma ^{2} < \infty \) whenever, for a subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}} \Rightarrow N(0, \sigma ^{2})\) . Motivated by this result, we study the central limit theorem along subsequences of sums of i.i.d. random variables when \(\{\sqrt{n}; n \in \mathbb N \}\) is replaced by \(\{\sqrt{na_{n}};n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) . We show that, for given positive nondecreasing sequence \(\{a_{n}; n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) and \(\lim _{n \rightarrow \infty } a_{n+1}/a_{n} = 1\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}a_{n_{k}}} \Rightarrow N(0, 1)\) . In particular, for given \(0 < p < 2\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/n_{k}^{1/p} \Rightarrow N(0, 1)\) .  相似文献   

13.
Given a random sample of size \(n\) with mean \(\overline{X} \) and standard deviation \(s\) from a symmetric distribution \(F(x; \mu , \sigma ) = F_{0} (( x- \mu ) / \sigma ) \) with \(F_0\) known, and \(X \sim F(x;\; \mu , \sigma )\) independent of the sample, we show how to construct an expansion \( a_n^{\prime } = \sum _{i=0}^\infty \ c_i \ n^{-i} \) such that \(\overline{X} - s a_n^{\prime } < X < \overline{X} + s a_n^{\prime } \) with a given probability \(\beta \) . The practical value of this result is illustrated by simulation and using a real data set.  相似文献   

14.
The Double Chain Markov Model (DCMM) is used to model an observable process $Y = \{Y_{t}\}_{t=1}^{T}$ as a Markov chain with transition matrix, $P_{x_{t}}$ , dependent on the value of an unobservable (hidden) Markov chain $\{X_{t}\}_{t=1}^{T}$ . We present and justify an efficient algorithm for sampling from the posterior distribution associated with the DCMM, when the observable process Y consists of independent vectors of (possibly) different lengths. Convergence of the Gibbs sampler, used to simulate the posterior density, is improved by adding a random permutation step. Simulation studies are included to illustrate the method. The problem that motivated our model is presented at the end. It is an application to real data, consisting of the credit rating dynamics of a portfolio of financial companies where the (unobserved) hidden process is the state of the broader economy.  相似文献   

15.
SupposeL(X) is the law of a positive random variableX, andZ is positive and independent ofX. Admissible solution pairs (L(X),L(Z)) are sought for the in-law equation $\hat X \cong X o Z$ °Z, where $L\left( {\hat X} \right)$ is a weighted law constructed fromL(X), and ° is a binary operation which in some sense is increasing. The class of weights includes length biasing of arbitrary order. When ° is addition and the weighting is ordinary length biasing, the class of admissibleL(X) comprises the positive infinitely divisible laws. Examples are given subsuming all known specific cases. Some extensions for general order of length-biasing are discussed.  相似文献   

16.
Suppose one has a sample of high-frequency intraday discrete observations of a continuous time random process, such as foreign exchange rates and stock prices, and wants to test for the presence of jumps in the process. We show that the power of any test of this hypothesis depends on the frequency of observation. In particular, if the process is observed at intervals of length $1/n$ 1 / n and the instantaneous volatility of the process is given by $ \sigma _{t}$ σ t , we show that at best one can detect jumps of height no smaller than $\sigma _{t}\sqrt{2\log (n)/n}$ σ t 2 log ( n ) / n . We present a new test which achieves this rate for diffusion-type processes, and examine its finite-sample properties using simulations.  相似文献   

17.
This paper considers the largest and smallest observations at the times when a new record of either kind (upper or lower) occurs. These are called the upper and lower current records and are denoted by ${R^l_m}$ and ${R^s_m}$ , respectively. The interval ${(R^s_m,R^l_m)}$ is then referred to as the record coverage. The prediction problem in the two-sample case is then discussed and, specifically, the exact outer and inner prediction intervals are derived for order statistics intervals from an independent future Y-sample based on the m-th record coverage from the X-sequence when the underlying distribution of the two samples are the same. The coverage probabilities of these intervals are exact and do not depend on the underlying distribution. Distribution-free prediction intervals as well as upper and lower prediction limits for spacings from a future Y-sample are obtained in terms of the record range from the X-sequence.  相似文献   

18.
Given a stationary multidimensional spatial process $\left\{ Z_{\mathbf{i}}=\left( X_{\mathbf{i}},\ Y_{\mathbf{i}}\right) \in \mathbb R ^d\right. \left. \times \mathbb R ,\mathbf{i}\in \mathbb Z ^{N}\right\} $ , we investigate a kernel estimate of the spatial conditional mode function of the response variable $Y_{\mathbf{i}}$ given the explicative variable $X_{\mathbf{i}}$ . Consistency in $L^p$ norm and strong convergence of the kernel estimate are obtained when the sample considered is a $\alpha $ -mixing sequence. An application to real data is given in order to illustrate the behavior of our methodology.  相似文献   

19.
Let \(X_1 ,X_2 ,\ldots ,X_n \) be a sequence of Markov Bernoulli trials (MBT) and \(\underline{X}_n =( {X_{n,k_1 } ,X_{n,k_2 } ,\ldots ,X_{n,k_r } })\) be a random vector where \(X_{n,k_i } \) represents the number of occurrences of success runs of length \(k_i \,( {i=1,2,\ldots ,r})\) . In this paper the joint distribution of \(\underline{X}_n \) in the sequence of \(n\) MBT is studied using method of conditional probability generating functions. Five different counting schemes of runs namely non-overlapping runs, runs of length at least \(k\) , overlapping runs, runs of exact length \(k\) and \(\ell \) -overlapping runs (i.e. \(\ell \) -overlapping counting scheme), \(0\le \ell are considered. The pgf of joint distribution of \(\underline{X}_n \) is obtained in terms of matrix polynomial and an algorithm is developed to get exact probability distribution. Numerical results are included to demonstrate the computational flexibility of the developed results. Various applications of the joint distribution of \(\underline{X}_n \) such as in evaluation of the reliability of \(( {n,f,k})\!\!:\!\!G\) and \(\!:\!\!G\) system, in evaluation of quantities related to start-up demonstration tests, acceptance sampling plans are also discussed.  相似文献   

20.
LetL(X) be the law of a positive random variableX, andZ be positive and independent ofX. Solution pairs (L(X), L(Z)) are sought for the in-law equation $\hat X \cong X \circ Z$ where $L(\hat X)$ is a weighted law constructed fromL(X), and ° is a binary operation which in some sense is increasing. The class of weights includes length biasing of arbitrary order. When ° is the maximum operation a complete solution in terms of a product integral is found for arbitrary weighting. Examples are given. An identity for the length biasing operator is used when ° is multiplication to establish a general solution in terms of an already solved inverse equation. Some examples are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号