首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model based on the skew Gaussian distribution is presented to handle skewed spatial data. It extends the results of popular Gaussian process models. Markov chain Monte Carlo techniques are used to generate samples from the posterior distributions of the parameters. Finally, this model is applied in the spatial prediction of weekly rainfall. Cross-validation shows that the predictive performance of our model compares favorably with several kriging variants.  相似文献   

2.
In this paper, we propose a spatial–temporal model for the wind speed (WS). We first estimate the model at the single spatial meteorological station independently on spatial correlations. The temporal model contains seasonality, a higher-order autoregressive component and a variance describing the remaining heteroskedesticity in residuals. We then model spatial dependencies by a Gaussian random field. The model is estimated on daily WS records from 18 meteorological stations in Lithuania. The validation procedure based on out-of-sample observations shows that the proposed model is reliable and can be used for various practical applications.  相似文献   

3.
Dynamic models for spatiotemporal data   总被引:1,自引:0,他引:1  
We propose a model for non-stationary spatiotemporal data. To account for spatial variability, we model the mean function at each time period as a locally weighted mixture of linear regressions. To incorporate temporal variation, we allow the regression coefficients to change through time. The model is cast in a Gaussian state space framework, which allows us to include temporal components such as trends, seasonal effects and autoregressions, and permits a fast implementation and full probabilistic inference for the parameters, interpolations and forecasts. To illustrate the model, we apply it to two large environmental data sets: tropical rainfall levels and Atlantic Ocean temperatures.  相似文献   

4.
In this paper we investigate the impact of model mis-specification, in terms of the dependence structure in the extremes of a spatial process, on the estimation of key quantities that are of interest to hydrologists and engineers. For example, it is often the case that severe flooding occurs as a result of the observation of rainfall extremes at several locations in a region simultaneously. Thus, practitioners might be interested in estimates of the joint exceedance probability of some high levels across these locations. It is likely that there will be spatial dependence present between the extremes, and this should be properly accounted for when estimating such probabilities. We compare the use of standard models from the geostatistics literature with max-stables models from extreme value theory. We find that, in some situations, using an incorrect spatial model for our extremes results in a significant under-estimation of these probabilities which – in flood defence terms – could lead to substantial under-protection.  相似文献   

5.
Abstract

This paper introduces a multiscale Gaussian convolution model of Gaussian mixture (MGC-GMM) via the convolution of the GMM and a multiscale Gaussian window function. It is found that the MGC-GMM is still a Gaussian mixture model, and its parameters can be mapped back to the parameters of the GMM. Meanwhile, the multiscale probability density function (MPDF) of the MGC-GMM can be viewed as the mathematical expectation of a random process induced by the Gaussian window function and the GMM, which can be directly estimated by the use of sample data. Based on the estimated MPDF, a novel algorithm denoted by the MGC is proposed for the selection of model and the parameter estimates of the GMM, where the component number and the means of the GMM are respectively determined by the number and the locations of the maximum points of the MPDF, and the numerical algorithms for the weight and variance parameters of the GMM are derived. The MGC is suitable for the GMM with diagonal covariance matrices. A MGC-EM algorithm is also presented for the generalized GMM, where the GMM is estimated using the EM algorithm by taking the estimates from the MGC as initial parameters of the GMM model. The proposed algorithms are tested via a series of simulated sample sets from the given GMM models, and the results show that the proposed algorithms can effectively estimate the GMM model.  相似文献   

6.
We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with t marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew‐Gaussian process, thus obtaining a process with skew‐t marginal distributions. For the proposed (skew) t process, we study the second‐order and geometrical properties and in the t case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the t process. Moreover we compare the performance of the optimal linear predictor of the t process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australia.  相似文献   

7.
We present a Bayesian analysis framework for matrix-variate normal data with dependency structures induced by rows and columns. This framework of matrix normal models includes prior specifications, posterior computation using Markov chain Monte Carlo methods, evaluation of prediction uncertainty, model structure search, and extensions to multidimensional arrays. Compared with Bayesian probabilistic matrix factorization, which integrates a Gaussian prior for single row of the data matrix, our proposed model, namely Bayesian hierarchical kernelized probabilistic matrix factorization, imposes Gaussian Process priors over multiple rows of the matrix. Hence, the learned model explicitly captures the underlying correlation among the rows and the columns. In addition, our method requires no specific assumptions like independence of latent factors for rows and columns, which obtains more flexibility for modeling real data compared to existing works. Finally, the proposed framework can be adapted to a wide range of applications, including multivariate analysis, times series, and spatial modeling. Experiments highlight the superiority of the proposed model in handling model uncertainty and model optimization.  相似文献   

8.
This work provides a class of non‐Gaussian spatial Matérn fields which are useful for analysing geostatistical data. The models are constructed as solutions to stochastic partial differential equations driven by generalized hyperbolic noise and are incorporated in a standard geostatistical setting with irregularly spaced observations, measurement errors and covariates. A maximum likelihood estimation technique based on the Monte Carlo expectation‐maximization algorithm is presented, and a Monte Carlo method for spatial prediction is derived. Finally, an application to precipitation data is presented, and the performance of the non‐Gaussian models is compared with standard Gaussian and transformed Gaussian models through cross‐validation.  相似文献   

9.
In this article, we utilize a scale mixture of Gaussian random field as a tool for modeling spatial ordered categorical data with non-Gaussian latent variables. In fact, we assume a categorical random field is created by truncating a Gaussian Log-Gaussian latent variable model to accommodate heavy tails. Since the traditional likelihood approach for the considered model involves high-dimensional integrations which are computationally intensive, the maximum likelihood estimates are obtained using a stochastic approximation expectation–maximization algorithm. For this purpose, Markov chain Monte Carlo methods are employed to draw from the posterior distribution of latent variables. A numerical example illustrates the methodology.  相似文献   

10.
Spatial linear processes {Xs, s ? T} where T is a triangular lattice in R2 are considered. Special attention is given to the class of spatial moving-average processes. Precisely, for each site s T, the variable Xs is defined as a linear combination of real-valued random shocks located at the vertices of regular concentric hexagons centered at s. For Gaussian random shocks, the process is also Gaussian, and estimates of its parameters are obtained by maximizing the exact likelihood. For non-Gaussian random shocks, the exact likelihood is difficult to obtain; however, the Gaussian likelihood is still used giving the pseudo-Gaussian likelihood estimates. The behaviour of these estimates is analyzed through the study of asymptotic properties and some simulation experiments based on an isotropic model defined with one coefficient.  相似文献   

11.
The recent literature on time series has developed a lot of models for the analysis of the dynamic conditional correlation, involving the same variable observed in different locations; very often, in this framework, the consideration of the spatial interactions is omitted. We propose to extend a time-varying conditional correlation model (following an autoregressive moving average dynamics) to include the spatial effects, with a specification depending on the local spatial interactions. The spatial part is based on a fixed symmetric weight matrix, called Gaussian kernel matrix, but its effect will vary along the time depending on the degree of time correlation in a certain period. We show the theoretical aspects, with the support of simulation experiments, and apply this methodology to two space–time data sets, in a demographic and a financial framework, respectively.  相似文献   

12.
An extended Gaussian max-stable process model for spatial extremes   总被引:1,自引:0,他引:1  
The extremes of environmental processes are often of interest due to the damage that can be caused by extreme levels of the processes. These processes are often spatial in nature and modelling the extremes jointly at many locations can be important. In this paper, an extension of the Gaussian max-stable process is developed, enabling data from a number of locations to be modelled under a more flexible framework than in previous applications. The model is applied to annual maximum rainfall data from five sites in South-West England. For estimation we employ a pairwise likelihood within a Bayesian analysis, incorporating informative prior information.  相似文献   

13.
A note on the correlation structure of transformed Gaussian random fields   总被引:1,自引:0,他引:1  
Transformed Gaussian random fields can be used to model continuous time series and spatial data when the Gaussian assumption is not appropriate. The main features of these random fields are specified in a transformed scale, while for modelling and parameter interpretation it is useful to establish connections between these features and those of the random field in the original scale. This paper provides evidence that for many ‘normalizing’ transformations the correlation function of a transformed Gaussian random field is not very dependent on the transformation that is used. Hence many commonly used transformations of correlated data have little effect on the original correlation structure. The property is shown to hold for some kinds of transformed Gaussian random fields, and a statistical explanation based on the concept of parameter orthogonality is provided. The property is also illustrated using two spatial datasets and several ‘normalizing’ transformations. Some consequences of this property for modelling and inference are also discussed.  相似文献   

14.
Nonparametric functional model with functional responses has been proposed within the functional reproducing kernel Hilbert spaces (fRKHS) framework. Motivated by its superior performance and also its limitations, we propose a Gaussian process model whose posterior mode coincide with the fRKHS estimator. The Bayesian approach has several advantages compared to its predecessor. We also use the predictive process models adapted from the spatial statistics literature to overcome the computational limitations. Modifications of predictive process models are nevertheless critical in our context to obtain valid inferences. The numerical results presented demonstrate the effectiveness of the modifications.  相似文献   

15.
We present an algorithm for multivariate robust Bayesian linear regression with missing data. The iterative algorithm computes an approximative posterior for the model parameters based on the variational Bayes (VB) method. Compared to the EM algorithm, the VB method has the advantage that the variance for the model parameters is also computed directly by the algorithm. We consider three families of Gaussian scale mixture models for the measurements, which include as special cases the multivariate t distribution, the multivariate Laplace distribution, and the contaminated normal model. The observations can contain missing values, assuming that the missing data mechanism can be ignored. A Matlab/Octave implementation of the algorithm is presented and applied to solve three reference examples from the literature.  相似文献   

16.
The developing markets are more volatile, unstable illiquid, and more prone to the external shocks. The non Gaussian VaR model gives more accurate risk models than Gaussian VaR models. Hence, the purpose of this study is to test if and how non Gaussian VaR models are comparatively better fit for risk modeling of developing markets than the Gaussian VaR models. The study measures the market risk for the daily closing price of Karachi Stock Exchange 100 index over the period of 2004–2016. The evaluation of VaR models suggests that non Gaussian dynamic model outperformed the Gaussian VaR models in developing markets.  相似文献   

17.
Abstract. A substantive problem in neuroscience is the lack of valid statistical methods for non‐Gaussian random fields. In the present study, we develop a flexible, yet tractable model for a random field based on kernel smoothing of a so‐called Lévy basis. The resulting field may be Gaussian, but there are many other possibilities, including random fields based on Gamma, inverse Gaussian and normal inverse Gaussian (NIG) Lévy bases. It is easy to estimate the parameters of the model and accordingly to assess by simulation the quantiles of test statistics commonly used in neuroscience. We give a concrete example of magnetic resonance imaging scans that are non‐Gaussian. For these data, simulations under the fitted models show that traditional methods based on Gaussian random field theory may leave small, but significant changes in signal level undetected, while these changes are detectable under a non‐Gaussian Lévy model.  相似文献   

18.
A group sequential test for the inverse Gaussian mean   总被引:1,自引:1,他引:0  
The present paper deals with the development of a group sequential test when response variable has an inverse Gaussian distribution with known scale parameter.  相似文献   

19.
In this article, we extend the Gaussian process for regression model by assuming a skew Gaussian process prior on the input function and a skew Gaussian white noise on the error term. Under these assumptions, the predictive density of the output function at a new fixed input is obtained in a closed form. Also, we study the Gaussian process predictor when the errors depart from the Gaussianity to the skew Gaussian white noise. The bias is derived in a closed form and is studied for some special cases. We conduct a simulation study to compare the empirical distribution function of the Gaussian process predictor under Gaussian white noise and skew Gaussian white noise.  相似文献   

20.
In this article, the normal inverse Gaussian stochastic volatility model of Barndorff-Nielsen is extended. The resulting model has a more flexible lag structure than the original one. In addition, the second-and fourth-order moments, important properties of a volatility model, are derived. The model can be considered either as a generalized autoregressive conditional heteroscedasticity model with nonnormal errors or as a stochastic volatility model with an inverse Gaussian distributed conditional variance. A simulation study is made to investigate the performance of the maximum likelihood estimator of the model. Finally, the model is applied to stock returns and exchange-rate movements. Its fit to two stylized facts and its forecasting performance is compared with two other volatility models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号