首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many sparse linear discriminant analysis (LDA) methods have been proposed to overcome the major problems of the classic LDA in high‐dimensional settings. However, the asymptotic optimality results are limited to the case with only two classes. When there are more than two classes, the classification boundary is complicated and no explicit formulas for the classification errors exist. We consider the asymptotic optimality in the high‐dimensional settings for a large family of linear classification rules with arbitrary number of classes. Our main theorem provides easy‐to‐check criteria for the asymptotic optimality of a general classification rule in this family as dimensionality and sample size both go to infinity and the number of classes is arbitrary. We establish the corresponding convergence rates. The general theory is applied to the classic LDA and the extensions of two recently proposed sparse LDA methods to obtain the asymptotic optimality.  相似文献   

2.
In this article, a sequential correction of two linear methods: linear discriminant analysis (LDA) and perceptron is proposed. This correction relies on sequential joining of additional features on which the classifier is trained. These new features are posterior probabilities determined by a basic classification method such as LDA and perceptron. In each step, we add the probabilities obtained on a slightly different data set, because the vector of added probabilities varies at each step. We therefore have many classifiers of the same type trained on slightly different data sets. Four different sequential correction methods are presented based on different combining schemas (e.g. mean rule and product rule). Experimental results on different data sets demonstrate that the improvements are efficient, and that this approach outperforms classical linear methods, providing a significant reduction in the mean classification error rate.  相似文献   

3.
Yanfang Li  Jing Lei 《Statistics》2018,52(4):782-800
We study high dimensional multigroup classification from a sparse subspace estimation perspective, unifying the linear discriminant analysis (LDA) with other recent developments in high dimensional multivariate analysis using similar tools, such as penalization method. We develop two two-stage sparse LDA models, where in the first stage, convex relaxation is used to convert two classical formulations of LDA to semidefinite programs, and furthermore subspace perspective allows for straightforward regularization and estimation. After the initial convex relaxation, we use a refinement stage to improve the accuracy. For the first model, a penalized quadratic program with group lasso penalty is used for refinement, whereas a sparse version of the power method is used for the second model. We carefully examine the theoretical properties of both methods, alongside with simulations and real data analysis.  相似文献   

4.
A method of regularized discriminant analysis for discrete data, denoted DRDA, is proposed. This method is related to the regularized discriminant analysis conceived by Friedman (1989) in a Gaussian framework for continuous data. Here, we are concerned with discrete data and consider the classification problem using the multionomial distribution. DRDA has been conceived in the small-sample, high-dimensional setting. This method has a median position between multinomial discrimination, the first-order independence model and kernel discrimination. DRDA is characterized by two parameters, the values of which are calculated by minimizing a sample-based estimate of future misclassification risk by cross-validation. The first parameter is acomplexity parameter which provides class-conditional probabilities as a convex combination of those derived from the full multinomial model and the first-order independence model. The second parameter is asmoothing parameter associated with the discrete kernel of Aitchison and Aitken (1976). The optimal complexity parameter is calculated first, then, holding this parameter fixed, the optimal smoothing parameter is determined. A modified approach, in which the smoothing parameter is chosen first, is discussed. The efficiency of the method is examined with other classical methods through application to data.  相似文献   

5.
In this article, we consider the problem of testing the hypothesis on mean vectors in multiple-sample problem when the number of observations is smaller than the number of variables. First we propose an independence rule test (IRT) to deal with high-dimensional effects. The asymptotic distributions of IRT under the null hypothesis as well as under the alternative are established when both the dimension and the sample size go to infinity. Next, using the derived asymptotic power of IRT, we propose an adaptive independence rule test (AIRT) that is particularly designed for testing against sparse alternatives. Our AIRT is novel in that it can effectively pick out a few relevant features and reduce the effect of noise accumulation. Real data analysis and Monte Carlo simulations are used to illustrate our proposed methods.  相似文献   

6.
Classification of high-dimensional data set is a big challenge for statistical learning and data mining algorithms. To effectively apply classification methods to high-dimensional data sets, feature selection is an indispensable pre-processing step of learning process. In this study, we consider the problem of constructing an effective feature selection and classification scheme for data set which has a small number of sample size with a large number of features. A novel feature selection approach, named four-Staged Feature Selection, has been proposed to overcome high-dimensional data classification problem by selecting informative features. The proposed method first selects candidate features with number of filtering methods which are based on different metrics, and then it applies semi-wrapper, union and voting stages, respectively, to obtain final feature subsets. Several statistical learning and data mining methods have been carried out to verify the efficiency of the selected features. In order to test the adequacy of the proposed method, 10 different microarray data sets are employed due to their high number of features and small sample size.  相似文献   

7.
We study the influence of a single data case on the results of a statistical analysis. This problem has been addressed in several articles for linear discriminant analysis (LDA). Kernel Fisher discriminant analysis (KFDA) is a kernel based extension of LDA. In this article, we study the effect of atypical data points on KFDA and develop criteria for identification of cases having a detrimental effect on the classification performance of the KFDA classifier. We find that the criteria are successful in identifying cases whose omission from the training data prior to obtaining the KFDA classifier results in reduced error rates.  相似文献   

8.
Among many classification methods, linear discriminant analysis (LDA) is a favored tool due to its simplicity, robustness, and predictive accuracy but when the number of genes is larger than the number of observations, it cannot be applied directly because the within-class covariance matrix is singular. Also, diagonal LDA (DLDA) is a simpler model compared to LDA and has better performance in some cases. However, in reality, DLDA requires a strong assumption based on mutual independence. In this article, we propose the modified LDA (MLDA). MLDA is based on independence, but uses the information that has an effect on classification performance with the dependence structure. We suggest two approaches. One is the case of using gene rank. The other involves no use of gene rank. We found that MLDA has better performance than LDA, DLDA, or K-nearest neighborhood and is comparable with support vector machines in real data analysis and the simulation study.  相似文献   

9.
In high-dimensional data analysis, penalized likelihood estimators are shown to provide superior results in both variable selection and parameter estimation. A new algorithm, APPLE, is proposed for calculating the Approximate Path for Penalized Likelihood Estimators. Both convex penalties (such as LASSO) and folded concave penalties (such as MCP) are considered. APPLE efficiently computes the solution path for the penalized likelihood estimator using a hybrid of the modified predictor-corrector method and the coordinate-descent algorithm. APPLE is compared with several well-known packages via simulation and analysis of two gene expression data sets.  相似文献   

10.
Kernel discriminant analysis translates the original classification problem into feature space and solves the problem with dimension and sample size interchanged. In high‐dimension low sample size (HDLSS) settings, this reduces the ‘dimension’ to that of the sample size. For HDLSS two‐class problems we modify Mika's kernel Fisher discriminant function which – in general – remains ill‐posed even in a kernel setting; see Mika et al. (1999). We propose a kernel naive Bayes discriminant function and its smoothed version, using first‐ and second‐degree polynomial kernels. For fixed sample size and increasing dimension, we present asymptotic expressions for the kernel discriminant functions, discriminant directions and for the error probability of our kernel discriminant functions. The theoretical calculations are complemented by simulations which show the convergence of the estimators to the population quantities as the dimension grows. We illustrate the performance of the new discriminant rules, which are easy to implement, on real HDLSS data. For such data, our results clearly demonstrate the superior performance of the new discriminant rules, and especially their smoothed versions, over Mika's kernel Fisher version, and typically also over the commonly used naive Bayes discriminant rule.  相似文献   

11.
It is often the case that high-dimensional data consist of only a few informative components. Standard statistical modeling and estimation in such a situation is prone to inaccuracies due to overfitting, unless regularization methods are practiced. In the context of classification, we propose a class of regularization methods through shrinkage estimators. The shrinkage is based on variable selection coupled with conditional maximum likelihood. Using Stein's unbiased estimator of the risk, we derive an estimator for the optimal shrinkage method within a certain class. A comparison of the optimal shrinkage methods in a classification context, with the optimal shrinkage method when estimating a mean vector under a squared loss, is given. The latter problem is extensively studied, but it seems that the results of those studies are not completely relevant for classification. We demonstrate and examine our method on simulated data and compare it to feature annealed independence rule and Fisher's rule.  相似文献   

12.
This paper is concerned with the problem of selecting variables in two-group discriminant analysis for high-dimensional data with fewer observations than the dimension. We consider a selection criterion based on approximately unbiased for AIC type of risk. When the dimension is large compared to the sample size, AIC type of risk cannot be defined. We propose AIC by replacing maximum likelihood estimator with ridge-type estimator. This idea follows Srivastava and Kubokawa (2008). It has been further extended by Yamamura et al. (2010). Simulation revealed that the proposed AIC performs well.  相似文献   

13.
We consider a challenging problem of testing any possible association between a response variable and a set of predictors, when the dimensionality of predictors is much greater than the number of observations. In the context of generalized linear models, a new approach is proposed for testing against high-dimensional alternatives. Our method uses soft-thresholding to suppress stochastic noise and applies the independence rule to borrow strength across the predictors. Moreover, the method can provide a ranked predictor list and automatically select “important” features to retain in the test statistic. We compare the performance of this method with some competing approaches via real data and simulation studies, demonstrating that our method maintains relatively higher power against a wide family of alternatives.  相似文献   

14.
The normal linear discriminant rule (NLDR) and the normal quadratic discriminant rule (NQDR) are popular classifiers when working with normal populations. Several papers in the literature have been devoted to a comparison of these rules with respect to classification performance. An aspect which has, however, not received any attention is the effect of an initial variable selection step on the relative performance of these classification rules. Cross model validation variabie selection has been found to perform well in the linear case, and can be extended to the quadratic case. We report the results of a simulation study comparing the NLDR and the NQDR with respect to the post variable selection classification performance. It is of interest that the NQDR generally benefits from an initial variable selection step. We also comment briefly on the problem of estimating the post selection error rates of the two rules.  相似文献   

15.
For time series data with obvious periodicity (e.g., electric motor systems and cardiac monitor) or vague periodicity (e.g., earthquake and explosion, speech, and stock data), frequency-based techniques using the spectral analysis can usually capture the features of the series. By this approach, we are able not only to reduce the data dimensions into frequency domain but also utilize these frequencies by general classification methods such as linear discriminant analysis (LDA) and k-nearest-neighbor (KNN) to classify the time series. This is a combination of two classical approaches. However, there is a difficulty in using LDA and KNN in frequency domain due to excessive dimensions of data. We overcome the obstacle by using Singular Value Decomposition to select essential frequencies. Two data sets are used to illustrate our approach. The classification error rates of our simple approach are comparable to those of several more complicated methods.  相似文献   

16.
Abstract

We consider the classification of high-dimensional data under the strongly spiked eigenvalue (SSE) model. We create a new classification procedure on the basis of the high-dimensional eigenstructure in high-dimension, low-sample-size context. We propose a distance-based classification procedure by using a data transformation. We also prove that our proposed classification procedure has consistency property for misclassification rates. We discuss performances of our classification procedure in simulations and real data analyses using microarray data sets.  相似文献   

17.
In this paper, we consider the classification of high-dimensional vectors based on a small number of training samples from each class. The proposed method follows the Bayesian paradigm, and it is based on a small vector which can be viewed as the regression of the new observation on the space spanned by the training samples. The classification method provides posterior probabilities that the new vector belongs to each of the classes, hence it adapts naturally to any number of classes. Furthermore, we show a direct similarity between the proposed method and the multicategory linear support vector machine introduced in Lee et al. [2004. Multicategory support vector machines: theory and applications to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99 (465), 67–81]. We compare the performance of the technique proposed in this paper with the SVM classifier using real-life military and microarray datasets. The study shows that the misclassification errors of both methods are very similar, and that the posterior probabilities assigned to each class are fairly accurate.  相似文献   

18.
We consider a linear regression model where there are group structures in covariates. The group LASSO has been proposed for group variable selections. Many nonconvex penalties such as smoothly clipped absolute deviation and minimax concave penalty were extended to group variable selection problems. The group coordinate descent (GCD) algorithm is used popularly for fitting these models. However, the GCD algorithms are hard to be applied to nonconvex group penalties due to computational complexity unless the design matrix is orthogonal. In this paper, we propose an efficient optimization algorithm for nonconvex group penalties by combining the concave convex procedure and the group LASSO algorithm. We also extend the proposed algorithm for generalized linear models. We evaluate numerical efficiency of the proposed algorithm compared to existing GCD algorithms through simulated data and real data sets.  相似文献   

19.
This paper adopts a Bayesian strategy for generalized ridge estimation for high-dimensional regression. We also consider significance testing based on the proposed estimator, which is useful for selecting regressors. Both theoretical and simulation studies show that the proposed estimator can simultaneously outperform the ordinary ridge estimator and the LSE in terms of the mean square error (MSE) criterion. The simulation study also demonstrates the competitive MSE performance of our proposal with the Lasso under sparse models. We demonstrate the method using the lung cancer data involving high-dimensional microarrays.  相似文献   

20.
We consider the problem of variable selection in high-dimensional partially linear models with longitudinal data. A variable selection procedure is proposed based on the smooth-threshold generalized estimating equation (SGEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero regression coefficients by solving the SGEE. We establish the asymptotic properties in a high-dimensional framework where the number of covariates pn increases as the number of clusters n increases. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号