首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zero-inflated negative binomial (ZINB) model is used to account for commonly occurring overdispersion detected in data that are initially analyzed under the zero-inflated Poisson (ZIP) model. Tests for overdispersion (Wald test, likelihood ratio test [LRT], and score test) based on ZINB model for use in ZIP regression models have been developed. Due to similarity to the ZINB model, we consider the zero-inflated generalized Poisson (ZIGP) model as an alternate model for overdispersed zero-inflated count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes score tests for overdispersion based on the ZIGP model and illustrates that the derived score statistics are exactly the same as the score statistics under the ZINB model. A simulation study indicates the proposed score statistics are preferred to other tests for higher empirical power. In practice, based on the approximate mean–variance relationship in the data, the ZINB or ZIGP model can be considered, and a formal score test based on asymptotic standard normal distribution can be employed for assessing overdispersion in the ZIP model. We provide an example to illustrate the procedures for data analysis.  相似文献   

2.
Abstract

The objective of this paper is to propose an efficient estimation procedure in a marginal mean regression model for longitudinal count data and to develop a hypothesis test for detecting the presence of overdispersion. We extend the matrix expansion idea of quadratic inference functions to the negative binomial regression framework that entails accommodating both the within-subject correlation and overdispersion issue. Theoretical and numerical results show that the proposed procedure yields a more efficient estimator asymptotically than the one ignoring either the within-subject correlation or overdispersion. When the overdispersion is absent in data, the proposed method might hinder the estimation efficiency in practice, yet the Poisson regression based regression model is fitted to the data sufficiently well. Therefore, we construct the hypothesis test that recommends an appropriate model for the analysis of the correlated count data. Extensive simulation studies indicate that the proposed test can identify the effective model consistently. The proposed procedure is also applied to a transportation safety study and recommends the proposed negative binomial regression model.  相似文献   

3.
The zero-inflated Poisson regression model is commonly used when analyzing economic data that come in the form of non-negative integers since it accounts for excess zeros and overdispersion of the dependent variable. However, a problem often encountered when analyzing economic data that has not been addressed for this model is multicollinearity. This paper proposes ridge regression (RR) estimators and some methods for estimating the ridge parameter k for a non-negative model. A simulation study has been conducted to compare the performance of the estimators. Both mean squared error and mean absolute error are considered as the performance criteria. The simulation study shows that some estimators are better than the commonly used maximum-likelihood estimator and some other RR estimators. Based on the simulation study and an empirical application, some useful estimators are recommended for practitioners.  相似文献   

4.
The count data model studied in the paper extends the Poisson model by al-lowing for overdispersion and serial correlation. Alternative approaches to esti-mate nuisance parameters, required for the correction of the Poisson maximum likelihood covariance matrix estimator and for a quasi-likelihood estimator, are studied. The estimators are evaluated by finite sample Monte Carlo experi-mentation. It is found that the Poisson maximum likelihood estimator with corrected covariance matrix estimators provide reliable inferences for longer time series. Overdispersion test statistics are wellbehaved, while conventional portmanteau statistics for white noise have too large sizes. Two empirical illustrations are included.  相似文献   

5.
The Poisson regression model (PRM) is employed in modelling the relationship between a count variable (y) and one or more explanatory variables. The parameters of PRM are popularly estimated using the Poisson maximum likelihood estimator (PMLE). There is a tendency that the explanatory variables grow together, which results in the problem of multicollinearity. The variance of the PMLE becomes inflated in the presence of multicollinearity. The Poisson ridge regression (PRRE) and Liu estimator (PLE) have been suggested as an alternative to the PMLE. However, in this study, we propose a new estimator to estimate the regression coefficients for the PRM when multicollinearity is a challenge. We perform a simulation study under different specifications to assess the performance of the new estimator and the existing ones. The performance was evaluated using the scalar mean square error criterion and the mean squared error prediction error. The aircraft damage data was adopted for the application study and the estimators’ performance judged by the SMSE and the mean squared prediction error. The theoretical comparison shows that the proposed estimator outperforms other estimators. This is further supported by the simulation study and the application result.KEYWORDS: Poisson regression model, Poisson maximum likelihood estimator, multicollinearity, Poisson ridge regression, Liu estimator, simulation  相似文献   

6.
Overdispersion is a common phenomenon in Poisson modeling. The generalized Poisson (GP) regression model accommodates both overdispersion and underdispersion in count data modeling, and is an increasingly popular platform for modeling overdispersed count data. The Poisson model is one of the special cases in the collection of models which may be specified by GP regression. Thus, we may derive a test of overdispersion which compares the equi-dispersion Poisson model within the context of the more general GP regression model. The score test has an advantage over the likelihood ratio test (LRT) and over the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis (the Poisson model). Herein, we propose a score test for overdispersion based on the GP model (specifically the GP-2 model) and compare the power of the test with the LRT and Wald tests. A simulation study indicates the proposed score test based on asymptotic standard normal distribution is more appropriate in practical applications.  相似文献   

7.
The maximum likelihood (ML) method is used to estimate the unknown Gamma regression (GR) coefficients. In the presence of multicollinearity, the variance of the ML method becomes overstated and the inference based on the ML method may not be trustworthy. To combat multicollinearity, the Liu estimator has been used. In this estimator, estimation of the Liu parameter d is an important problem. A few estimation methods are available in the literature for estimating such a parameter. This study has considered some of these methods and also proposed some new methods for estimation of the d. The Monte Carlo simulation study has been conducted to assess the performance of the proposed methods where the mean squared error (MSE) is considered as a performance criterion. Based on the Monte Carlo simulation and application results, it is shown that the Liu estimator is always superior to the ML and recommendation about which best Liu parameter should be used in the Liu estimator for the GR model is given.  相似文献   

8.
Overdispersion has been a common phenomenon in count data and usually treated with the negative binomial model. This paper shows that measurement errors in covariates in general also lead to overdispersion on the observed data if the true data generating process is indeed the Poisson regression. This kind of overdispersion cannot be treated using the negative binomial model, as otherwise, biases will occur. To provide consistent estimates, we propose a new type of corrected score estimator assuming that the distribution of the latent variables is known. The consistency and asymptotic normality of the proposed estimator are established. Simulation results show that this estimator has good finite sample performance. We also illustrate that the Akaike information criterion and Bayesian information criterion work well for selecting the correct model if the true model is the errors-in-variables Poisson regression.  相似文献   

9.
The problem of estimation of the parameters in a logistic regression model is considered under multicollinearity situation when it is suspected that the parameter of the logistic regression model may be restricted to a subspace. We study the properties of the preliminary test based on the minimum ϕ -divergence estimator as well as in the ϕ -divergence test statistic. The minimum ϕ -divergence estimator is a natural extension of the maximum likelihood estimator and the ϕ -divergence test statistics is a family of the test statistics for testing the hypothesis that the regression coefficients may be restricted to a subspace.  相似文献   

10.
In a single index Poisson regression model with unknown link function, the index parameter can be root- n consistently estimated by the method of pseudo maximum likelihood. In this paper, we study, by simulation arguments, the practical validity of the asymptotic behaviour of the pseudo maximum likelihood index estimator and of some associated cross-validation bandwidths. A robust practical rule for implementing the pseudo maximum likelihood estimation method is suggested, which uses the bootstrap for estimating the variance of the index estimator and a variant of bagging for numerically stabilizing its variance. Our method gives reasonable results even for moderate sized samples; thus, it can be used for doing statistical inference in practical situations. The procedure is illustrated through a real data example.  相似文献   

11.
We consider two estimation schemes based on penalized quasilikelihood and quasi-pseudo-likelihood in Poisson mixed models. The asymptotic bias in regression coefficients and variance components estimated by penalized quasilikelihood (PQL) is studied for small values of the variance components. We show the PQL estimators of both regression coefficients and variance components in Poisson mixed models have a smaller order of bias compared to those for binomial data. Unbiased estimating equations based on quasi-pseudo-likelihood are proposed and are shown to yield consistent estimators under some regularity conditions. The finite sample performance of these two methods is compared through a simulation study.  相似文献   

12.
A new modified Jackknifed estimator for the Poisson regression model   总被引:1,自引:0,他引:1  
The Poisson regression is very popular in applied researches when analyzing the count data. However, multicollinearity problem arises for the Poisson regression model when the independent variables are highly intercorrelated. Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators and some methods for estimating the ridge parameter k in the Poisson regression have been proposed. It has been found that some estimators are better than the commonly used maximum-likelihood (ML) estimator and some other RR estimators. In this study, the modified Jackknifed Poisson ridge regression (MJPR) estimator is proposed to remedy the multicollinearity. A simulation study and a real data example are provided to evaluate the performance of estimators. Both mean-squared error and the percentage relative error are considered as the performance criteria. The simulation study and the real data example results show that the proposed MJPR method outperforms the Poisson ridge regression, Jackknifed Poisson ridge regression and the ML in all of the different situations evaluated in this paper.  相似文献   

13.
Random coefficient regression models have been used to analyze cross-sectional and longitudinal data in economics and growth-curve data from biological and agricultural experiments. In the literature several estimators, including the ordinary least squares and the estimated generalized least squares (EGLS), have been considered for estimating the parameters of the mean model. Based on the asymptotic properties of the EGLS estimators, test statistics have been proposed for testing linear hypotheses involving the parameters of the mean model. An alternative estimator, the simple mean of the individual regression coefficients, provides estimation and hypothesis-testing procedures that are simple to compute and teach. The large sample properties of this simple estimator are shown to be similar to that of the EGLS estimator. The performance of the proposed estimator is compared with that of the existing estimators by Monte Carlo simulation.  相似文献   

14.
We propose the penalized empirical likelihood method via bridge estimator in Cox's proportional hazard model for parameter estimation and variable selection. Under reasonable conditions, we show that penalized empirical likelihood in Cox's proportional hazard model has oracle property. A penalized empirical likelihood ratio for the vector of regression coefficients is defined and its limiting distribution is a chi-square distributions. The advantage of penalized empirical likelihood as a nonparametric likelihood approach is illustrated in testing hypothesis and constructing confidence sets. The method is illustrated by extensive simulation studies and a real example.  相似文献   

15.
A semiparametric method is developed to estimate the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonparametric part of the method treats the marginal distributions of the error term as unknown, and estimates them using suitable empirical distribution functions. Then the dependence parameter is estimated by either maximizing a pseudolikelihood or solving an estimating equation. It is shown that this estimator is asymptotically normal, and a consistent estimator of its large sample variance is given. A simulation study shows that the proposed semiparametric method is better than the parametric ones available when the error distribution is unknown, which is almost always the case in practice. It turns out that there is no loss of asymptotic efficiency as a result of the estimation of regression parameters. An empirical example on portfolio management is used to illustrate the method.  相似文献   

16.
This paper considers nonlinear regression models when neither the response variable nor the covariates can be directly observed, but are measured with both multiplicative and additive distortion measurement errors. We propose conditional variance and conditional mean calibration estimation methods for the unobserved variables, then a nonlinear least squares estimator is proposed. For the hypothesis testing of parameter, a restricted estimator under the null hypothesis and a test statistic are proposed. The asymptotic properties for the estimator and test statistic are established. Lastly, a residual-based empirical process test statistic marked by proper functions of the regressors is proposed for the model checking problem. We further suggest a bootstrap procedure to calculate critical values. Simulation studies demonstrate the performance of the proposed procedure and a real example is analysed to illustrate its practical usage.  相似文献   

17.
In the presence of multicollinearity the literature points to principal component regression (PCR) as an estimation method for the regression coefficients of a multiple regression model. Due to ambiguities in the interpretation, involved by the orthogonal transformation of the set of explanatory variables, the method could not yet gain wide acceptance. Factor analysis regression (FAR) provides a model-based estimation method which is particularly tailored to overcome multicollinearity in an errors-in-variables setting. In this paper two feasible versions of a FAR estimator are compared with the OLS estimator and the PCR estimator by means of Monte Carlo simulation. While the PCR estimator performs best in cases of strong and high multicollinearity, the Thomson-based FAR estimator proves to be superior when the regressors are moderately correlated.  相似文献   

18.
This note discusses an extension to the score test statistics for overdispersion in Poisson and binomial regression models [Dean, C.B., 1992. Testing for overdispersion in Poisson and binomial regression models. J. Amer. Statist. Assoc. 87, 451–457]. Examples illustrate the application of the extended results.  相似文献   

19.
Homogeneity of dispersion parameters and zero-inflation parameters is a standard assumption in zero-inflated generalized Poisson regression (ZIGPR) models. However, this assumption may be not appropriate in some situations. This work develops a score test for varying dispersion and/or zero-inflation parameter in the ZIGPR models, and corresponding test statistics are obtained. Two numerical examples are given to illustrate our methodology, and the properties of score test statistics are investigated through Monte Carlo simulations.  相似文献   

20.
The negative binomial (NB) model and the generalized Poisson (GP) model are common alternatives to Poisson models when overdispersion is present in the data. Having accounted for initial overdispersion, we may require further investigation as to whether there is evidence for zero-inflation in the data. Two score statistics are derived from the GP model for testing zero-inflation. These statistics, unlike Wald-type test statistics, do not require that we fit the more complex zero-inflated overdispersed models to evaluate zero-inflation. A simulation study illustrates that the developed score statistics reasonably follow a χ2 distribution and maintain the nominal level. Extensive simulation results also indicate the power behavior is different for including a continuous variable than a binary variable in the zero-inflation (ZI) part of the model. These differences are the basis from which suggestions are provided for real data analysis. Two practical examples are presented in this article. Results from these examples along with practical experience lead us to suggest performing the developed score test before fitting a zero-inflated NB model to the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号